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ABSTRACT

The ATHENA code has been developed for best-estimate transient simulation of light water reactor
coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant
system and the core for loss-of-coolant accidents and operational transients such as anticipated transient
without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is
used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system
components are included to permit modeling of plant controls, turbines, condensers, and secondary
feedwater systems.

ATHENA code documentation is divided into six volumes: Volume I presents modeling theory and
associated numerical schemes; Volume II details instructions for code application and input data
preparation; Volume III presents the results of developmental assessment cases that demonstrate and verify
the models used in the code; Volume IV discusses in detail ATHENA models and correlations; Volume V
presents guidelines that have evolved over the past several years through the use of the ATHENA  code;
and Volume VI discusses the numerical scheme used in ATHENA.
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ATHENA/2.3
EXECUTIVE SUMMARY

The RELAP5 series of codes has been developed at the Idaho National Engineering and
Environmental Laboratory (INEEL) under sponsorship of the U.S. Department of Energy, the U.S.
Nuclear Regulatory Commission, members of the International Code Assessment and Applications
Program (ICAP), members of the Code Applications and Maintenance Program (CAMP), and members of
the International RELAP5 Users Group (IRUG). Specific applications of the code have included
simulations of transients in light water reactor (LWR) systems such as loss of coolant, anticipated
transients without scram (ATWS), and operational transients such as loss of feedwater, loss of offsite
power, station blackout, and turbine trip. ATHENA, the latest in the series of RELAP5 codes, is a highly
generic code that, in addition to calculating the behavior of a reactor coolant system during a transient, can
be used for simulation of a wide variety of hydraulic and thermal transients in both nuclear and nonnuclear
systems involving mixtures of vapor, liquid, noncondensable gases, and nonvolatile solute.

The mission of the ATHENA development program was to develop a code version suitable for the
analysis of all transients and postulated accidents in fusion reactor transient applications. Additional
capabilities include space reactor simulations, gas cooled reactor applications, fast breeder reactor
modeling, and cardiovascular bloodflow simulations.

The ATHENA code is based on a nonhomogeneous and nonequilibrium model for the two-phase
system that is solved by a fast, partially implicit numerical scheme to permit economical calculation of
system transients. The objective of the ATHENA development effort from the outset was to produce a
code that included important first-order effects necessary for accurate prediction of system transients but
that was sufficiently simple and cost effective so that parametric or sensitivity studies were possible.

The code includes many generic component models from which general systems can be simulated.
The component models include pumps, valves, pipes, heat releasing or absorbing structures, reactor
kinetics, electric heaters, jet pumps, turbines, separators, annuli, pressurizers, feedwater heaters, ECC
mixers, accumulators, and control system components. In addition, special process models are included for
effects such as form loss, flow at an abrupt area change, branching, choked flow, boron tracking, and
noncondensable gas transport.

The system mathematical models are coupled into an efficient code structure. The code includes
extensive input checking capability to help the user discover input errors and inconsistencies. Also
included are free-format input, restart, renodalization, and variable output edit features. These user
conveniences were developed in recognition that generally the major cost associated with the use of a
system transient code is in the engineering labor and time involved in accumulating system data and
developing system models, while the computer cost associated with generation of the final result is usually
small.

The development of the models and code versions that constitute ATHENA has spanned more than
two decades from the early stages of RELAP5 numerical scheme development (circa 1976) to the present.
ATHENA represents the aggregate accumulation of experience in modeling reactor core behavior during
vii INEEL-EXT-98-00834-V1
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accidents, two-phase flow processes, and LWR systems. The code development has benefited from
extensive application and comparison to experimental data in the LOFT, PBF, Semiscale, ACRR, NRU,
and other experimental programs.

The ATHENA version contains several important enhancements over previous versions of the code.
Enhancements include a new matrix solver, new thermodynamic properties for water, and improved time
advancement for  greater robustness. The new Border Profiled Lower Upper (BPLU) matrix solver is used
to efficiently solve sparse linear systems of the form AX = B. BPLU is designed to take advantage of
pipelines, vector hardware, and shared-memory parallel architecture to run fast. BPLU is most efficient for
solving systems that correspond to networks, such as pipes, but is efficient for any system that it can
permute into border-banded form.

The ATHENA code manual consists of six separate volumes. The modeling theory and associated
numerical schemes are described in Volume I, to acquaint the user with the modeling base and thus aid in
effective use of the code. Volume II contains more detailed instructions for code application and specific
instructions for input data preparation. 

Volume III presents the results of developmental assessment cases run with ATHENA to
demonstrate and validate the models used in the code. The assessment matrix contains phenomenological
problems, separate-effects tests, and integral systems tests.

Volume IV contains a detailed discussion of the models and correlations used in ATHENA. It
presents the user with the underlying assumptions and simplifications used to generate and implement the
base equations into the code so that an intelligent assessment of the applicability and accuracy of the
resulting calculations can be made. Thus, the user can determine whether ATHENA is capable of modeling
his or her particular application, whether the calculated results will be directly comparable to measurement
or whether they must be interpreted in an average sense, and whether the results can be used to make
quantitative decisions.

Volume V provides guidelines for users that have evolved over the past several years from
applications of the ATHENA code at the Idaho National Engineering and Environmental Laboratory, at
other national laboratories, and by users throughout the world.

Volume VI discusses the numerical scheme in ATHENA.
INEEL-EXT-98-00834-V1 viii
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NOMENCLATURE

A cross-sectional area (m2), coefficient matrix in hydrodynamics, coefficient in
pressure and velocity equations

A1 coefficient in heat conduction equation at boundaries

At throat area (m2)

a speed of sound (m/s), interfacial area per unit volume (m-1), coefficient in gap
conductance, coefficient in heat conduction equation, absorption coefficient

B coefficient matrix, drag coefficient, coefficient in pressure and velocity equations

B1 coefficient in heat conduction equation at boundaries

b coefficient in heat conduction equation, source vector in hydrodynamics

Bx body force in x coordinate direction (m/s2)

By body force in y coordinate direction (m/s2)

C coefficient of virtual mass, general vector function, coefficient in pressure and
velocity equations, delayed neutron precursors in reactor kinetics, concentration,
pressure-dependent coefficient in Unal’s correlation (1/K•s)

Co coefficient in noncondensable specific internal energy equation (J/kg•K)

C0, C1 constants in drift flux model

CD drag coefficient

Cp specific heat at constant pressure (J/kg•K)

Cv specific heat at constant volume (J/kg•K), valve flow coefficient

c coefficient in heat conduction equation, coefficient in new-time volume-average
velocity equation, constant in CCFL model

D coefficient of relative Mach number, diffusivity, pipe diameter or equivalent
diameter (hydraulic diameter) (m), heat conduction boundary condition matrix,
coefficient in pressure and velocity equations

Do coefficient in noncondensable specific internal energy equation (J/kg•K2)

D1 coefficient of heat conduction equation at boundaries

d coefficient in heat conduction equation, droplet diameter (m)

DISS energy dissipation function (W/m3)

E specific total energy (U + v2/2) (J/kg), emissivity, Young’s modulus, term in
iterative heat conduction algorithm, coefficient in pressure equation

e interfacial roughness

F term in iterative heat conduction algorithm, gray-body factor with subscript,
frictional loss coefficient, vertical stratification factor
ix INEEL-EXT-98-00834-V1
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FA force per unit volume

FIF, FIG interphase drag coefficients (liquid, vapor/gas) (s-1)

FI interphase drag coefficient (m3/kg•s)

FWF, FWG wall drag coefficients (liquid, vapor/gas) (s-1)

f interphase friction factor, vector for liquid velocities in hydrodynamics

G mass flux (kg/m2-s), shear stress, gradient, coefficient in heat conduction, vector
quantity, fraction of delayed neutrons in reactor kinetics

GC dynamic pressure for valve (Pa)

Gr Grashof number

g gravitational constant (m/s2), temperature jump distance (m), vector for vapor/gas
velocities in hydrodynamics

H elevation (m), volumetric heat transfer coefficient (W/K•m3), head (m)

HLOSSF, HLOSSG form or frictional losses (liquid, vapor/gas) (m/s)

h specific enthalpy (J/kg), heat transfer coefficient (W/m2•K), energy transfer
coefficient for Γg, head ratio

hL dynamic head loss (m)

I identity matrix, moment of inertia (N-m-s2)

J junction velocity (m/s)

j superficial velocity

K energy form loss coefficient

Ks Spring constant

Ku Kutateladze number

k thermal conductivity (W/m•K)

kB Boltzmann constant

L length, limit function, Laplace capillary length

M Mach number, molecular weight, pump two-phase multiplier, mass transfer rate,
mass (kg)

m constant in CCFL model

N number of system nodes, number density (#/m3), pump speed (rad/s),
nondimensional number

Nu Nusselt number

n unit vector, order of equation system

PBP valve closing back pressure (Pa)
INEEL-EXT-98-00834-V1 x
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P pressure (Pa), reactor power (W), channel perimeter (m), turbine power (W)

PD nitrogen pressure in accumulator dome (Pa)

Pf relates reactor power to heat generation rate in heat structures

Po atmospheric pressure (Pa)

p wetted perimeter (m), particle probability function

PCV specified pressure required to close a valve (Pa)

Pr Prandtl number

Q volumetric heat addition rate (W/m3), space dependent function, volumetric flow
rate (m3/s)

QD total heat transfer rate to vapor dome (W)

q heat transfer rate (W), heat flux (W/m2)

R radius (m), surface roughness in gap conductance, radiation resistance term,
nondimensional stratified level height

Re Reynolds number

Rep the particle Reynolds number

Rn, Rs gas constants (noncondensable, vapor) (N•m/kg•K)

r reaction fraction for turbine, radial position, ratio of volume centered boron
density gradients

S Chen’s boiling suppression factor, stress gradient, specific entropy (J/kg•K),
shape factor, real constant, source term in heat conduction or reactor kinetics (W)

s surface, Laplace transform variable

T temperature (K), trip

Tc critical temperature (K)

TR reduced temperature (K)

Tt specified time-dependent function in heat conduction

t time (s)

U specific internal energy (J/kg), vector of dependent variables

u radial displacement in gap conductance (m)

V volume (m3), specific volume (m3/kg), control quantity

VD volume of noncondensable in accumulator dome (m3)

VFDP, VGDP coefficient for pressure change in momentum equations (liquid, vapor/gas)
(m/s-Pa)

VIS numerical viscosity terms in momentum equations (m2/s2)
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VISF, VISG numerical viscosity terms in momentum equations (liquid, vapor/gas) (m2/s2)

VUNDER, VOVER separator model parameters (liquid, vapor/gas)

v mixture velocity (m/s), phasic velocity (m/s), flow ratio, liquid surge line velocity
(m/s)

vc choking velocity (m/s)

W weight of valve disk, weighting function in reactor kinetics, relaxation parameter
in heat conduction, shaft work per unit mass flow rate, mass flow rate

Wcrit critical Weber number

We Weber number

w humidity ratio

X flow quality, static quality, mass fraction, conversion from MeV/s to watts

x spatial coordinate (m), vector of hydrodynamic variables

Y control variable

Z two-phase friction correlation factor, function in reactor kinetics

∆Z height of volume

z elevation change coordinate (m)

Symbols

α void fraction, subscripted volume fraction, angular acceleration (rad/s2),
coefficient for least-squares fit, speed ratio

β coefficient of isobaric thermal expansion (K-1), effective delayed neutron fraction
in reactor kinetics

Γ volumetric mass exchange rate (kg/m3•s)

γ exponential function in decay heat model

∆Pf dynamic pressure loss (Pa)

∆Ps increment in vapor pressure (Pa)

∆Vs increment in specific volume of vapor (m3/kg)

∆t increment in time variable (s)

∆tc Courant time step (s)

∆x increment in spatial variable (m)

δ area ratio, truncation error measure, film thickness (m), impulse function,
Deryagin number

ε coefficient, strain function, emissivity, tabular function of area ratio, surface
roughness, wall vapor generation/condensation flag
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ζ diffusion coefficient, multiplier, or horizontal stratification terms

η efficiency, bulk/saturation enthalpy flag

θ relaxation time in correlation for Γ, angular position (rad), discontinuity detector
function

κ coefficient of isothermal compressibility (Pa-1)

Λ prompt neutron generation time, Baroczy dimensionless property index

λ eigenvalue, interface velocity parameter, friction factor, decay constant in reactor
kinetics

µ viscosity (kg/m•s)

ν kinematic viscosity (m2/s), Poisson’s ratio

ξ exponential function, RMS precision

π 3.141592654

ρ density (kg/m3), reactivity in reactor kinetics (dollars)

∑f fission cross-section

∑′ depressurization rate (Pa/s)

σ surface tension (J/m2), stress, flag used in heat conduction equations to indicate
transient or steady-state

τ shear stresses (N), torque (N-m)

υ specific volume (m3/kg)

φ donored property, Lockhart-Martinelli two-phase parameter, neutron flux in
reactor kinetics, angle of inclination of valve assembly, velocity-dependent
coefficient in Unal’s correlation

Φ Roe’s superbee gradient limiter

χ Lockhart-Martinelli function

ψ coefficient, fission rate (number/s)

ω angular velocity, constant in Godunov solution scheme

Subscripts

AM annular mist to mist flow regime transition

a average value

ann liquid film in annular mist flow regime

BS bubbly-to-slug flow regime transition

b bubble, boron
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bulk bulk fluid

CHF value at critical heat flux condition

c vena contract, continuous phase, cladding, critical property, cross-section,
condensation

cm cladding midpoint

co carryover

core vapor/gas core in annular-mist flow regime

cr, crit critical property or condition

cu carryunder

D drive line, vapor dome, discharge passage of mechanical separator

DE value at lower end of slug to annular-mist flow regime transition

d droplet, delay in control component

drp droplet

e equilibrium, equivalent quality in hydraulic volumes, valve ring exit, elastic
deformation, entrainment

ent entrainment

F wall friction, fuel

FB, FBB film boiling, Bromley film boiling

f liquid phase, flooding, film, flow

fg phasic difference (i.e., vapor/gas term-liquid term)

flow flow

fp onset of vapor/gas pull-through

fr frictional

front value at thermal stratification front

g vapor/gas phase, gap

ge incipient liquid entrainment

H head

HE homogeneous equilibrium

h, hy, hydro hydraulic

I interface

IAN inverted annular flow regime

i interface, index
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in volume inlets

iso isothermal

j, j+1, j-1 spatial noding indices for junctions

K spatial noding index for volumes

k iteration index in choking model

L spatial noding index for volume, laminar

lev, level value at two-phase level

l left boundary in heat conduction

M rightmost boundary in heat conduction, spatial noding index for volume

m mixture property, motor, mesh point

min minimum value

NOZ nozzle

n noncondensable component of vapor/gas phase

o reference value

out volume outlets

p partial pressure of vapor, particle, projected

pipe cross-section of flow channel

R rated values

r relative Mach number, right boundary in heat structure mesh

ref reference value

rms root mean square

S suction region

SA value at upper end of slug to annular-mist flow regime transition

s vapor component of vapor/gas phase, superheated

sat saturated quality

sb small bubbles

sr surface of heat structure

st stratified

std standard precision

T point of minimum area, turbulent

TB transition boiling
xv INEEL-EXT-98-00834-V1
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Tb Taylor bubble

t total pressure, turbulent, tangential, throat

up upstream quantity

v mass mean Mach number, vapor/gas quantity, valve

w wall, water

wall wall

wg, wf wall to vapor/gas, wall to liquid

1 upstream station, multiple junction index, vector index

1φ single-phase value

2 downstream station, multiple junction index, vector index

2φ two-phase value

τ torque

µ viscosity

infinity

~ vector

≈ Matrix

Superscripts

B bulk liquid

b boundary gradient weight factor in heat conduction, vector quantities

exp old time terms in velocity equation, used to indicate explicit velocities in choking

m-1, m, m+1 mesh points in heat conduction finite difference equation or mean value

n, n+l time level index

n+1/2 an average of quantities with superscripts n and n+1

o initial value

R real part of complex number, right boundary in heat conduction

s saturation property, space gradient weight factor in heat conduction

v volume gradient weight factor in heat conduction

W wall

1 vector index, coefficient in velocity equation

2 vector index

∞

INEEL-EXT-98-00834-V1 xvi



ATHENA/2.3
* total derivative of a saturation property with respect to pressure, local variable,
bulk/saturation property

′ derivative

- vector, average quantity

. donored quantity

~ unit momentum for mass exchange, intermediate time variable

linearized quantity, quality based on total mixture massˆ
xvii INEEL-EXT-98-00834-V1
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1  Introduction

 The RELAP5 series of codes has been developed at the Idaho National Engineering and
Environmental Laboratory (INEEL) under sponsorship of the U.S. Department of Energy, the U.S.
Nuclear Regulatory Commission, members of the International Code Assessment and Applications
Program (ICAP), members of the Code Applications and Maintenance Program (CAMP), and members of
the International RELAP5 Users Group (IRUG). Specific applications of the code have included
simulations of transients in light water reactor (LWR) systems, such as loss of coolant, anticipated
transients without scram (ATWS), and operational transients such as loss of feedwater, loss of offsite
power, station blackout, and turbine trip. ATHENA, the latest code version in the series of RELAP5 codes,
is a highly generic code that, in addition to calculating the behavior of a reactor coolant system during a
transient, can be used for simulation of a wide variety of hydraulic and thermal transients in both nuclear
and nonnuclear systems involving mixtures of vapor, liquid, noncondensable gas, and nonvolatile solute.

1.1  Development of ATHENA

The ATHENA code is a successor to the RELAP5/MOD3 code1.1-1 which was developed for the
Nuclear Regulatory Commission. Department of Energy sponsors of the code extensions in ATHENA
include the DOE Office of Fusion Energy Sciences, Savannah River Laboratory, Bettis Atomic Power
Laboratory, the International RELAP5 Users Group (IRUG), and the Laboratory Directed Research and
Development Program at the INEEL. The ATHENA version contains several important enhancements
over previous versions of the code. Enhancements include a new matrix solver, new thermodynamic
properties of water, and improved time advancement for greater robustness.  The new Border Profiled
Lower Upper (BPLU) matrix solver is used to efficiently solve sparse linear systems of the form AX = B.
BPLU is designed to take advantage of pipelines, vector hardware, and shared-memory parallel
architecture to run fast. BPLU is most efficient for solving systems that correspond to networks, such as
pipes, but is efficient for any system that it can permute into border-banded form.  

1.1.1  References

1.1-1. The RELAP5 Development Team, RELAP5/MOD3 Code Manual, Volumes 1 and 2,
NUREG/CR-5535, INEL-95/0174, Idaho National Engineering Laboratory, August 1995. 

1.2  Quality Assurance

ATHENA is maintained under a strict code-configuration system that provides a historical record of
the changes in the code. Changes are made using a version control system that allows separate
identification of improvements made to each successive version of the code. Modifications and
improvements to the coding are reviewed and checked as part of a formal quality program for software. In
addition, the theory and implementation of code improvements are validated through assessment
calculations that compare the code-predicted results to idealized test cases or experimental results.
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2  Code Architecture

Modeling flexibility, user-convenience, computer efficiency, and design for future growth were
primary considerations in the selection of the basic architecture of the code. The following sections cover
computer adaptability, code top level organization, input processing, and transient operation.

2.1  Computer Adaptability

ATHENA is written in FORTRAN 77 for a variety of 64-bit and 32-bit computers. Here, a 64-bit
computer is one in which floating point, integer, and logical quantities use 64-bit words; a 32-bit machine
uses 32-bit words for those same quantities but also allows 64-bit floating point operations. Examples of
64-bit computers are Cray and Cyber-NOS-VE mainframes, DEC Alpha workstations, and SGI
workstations. Examples of 32-bit computers include IBM mainframes, such as a 3090; DEC, HP, IBM,
SGI, and SUN workstations; and personal computers. 

A common source is maintained for all computer versions. The common source is conditioned for a
particular computer and operating system through the use of two precompilers maintained as part of
ATHENA. The first precompiler processes compile time options such as machine and operating system
dependencies. Through the use of standard Fortran and a widely used standard for bit operations, there is
very little hardware dependence. The primary hardware dependence is in matrix factoring routines where
details of the floating point characteristics are needed to monitor roundoff error. A future full conversion to
the Fortran90 standard should remove all hardware dependencies. ATHENA is developed and maintained
at INEEL on computers using the UNIX operating system. Some user-convenient features have been
incorporated into the code based on UNIX, but these are under compile time option. The code does not
depend on any particular operating system. The installation scripts distributed with the code are UNIX
based, and control language to install and execute the code must be developed by the user for other
operating systems. The source code appears to be written only for 64-bit machines. The second
precompiler, however, converts the code for 32-bit computers by converting floating point variables to
double precision, changing floating point literals to double precision, and adding an additional subscript to
integer and logical arrays that are equivalenced to double precision floating point arrays such that they
index as 64-bit quantities even though only 32-bit integer arithmetic and logical operations are used. As an
example of the additional subscript, an integer statement would be changed from INTEGER IA(1000000)
to INTEGER IA(2,1000000).

Transmittals of the code usually show the installation and execution of sample problems on several
machines. The machines used depend on the machines currently available to the development staff.

2.2  Top Level Organization

ATHENA is coded in a modular fashion using top-down structuring. The various models and

procedures are isolated in separate subroutines. The top level structure is shown in Figure 2.2-1 and
consists of input (INPUTD), transient/steady-state (TRNCTL), and stripping (STRIP) blocks.
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The input block (INPUTD) processes input, checks input data, and prepares required data blocks for
all program options and is discussed in more detail in Section 2.3.

The transient/steady-state block (TRNCTL) handles both transient and the steady-state options. The
steady-state option determines the steady-state conditions if a properly posed steady-state problem is
presented. Steady-state is obtained by running an accelerated transient until the time derivatives approach
zero. Thus, the steady-state option is very similar to the transient option but contains convergence testing
algorithms to determine satisfactory steady-state, divergence from steady-state, or cyclic operation. If the
transient technique alone were used, approach to steady-state from an initial condition would be identical
to a plant transient from that initial condition. Pressures, densities, and flow distributions would adjust
quickly, but thermal effects would occur more slowly. To reduce the transient time required to reach
steady-state, the steady-state option artificially accelerates heat conduction by reducing the thermal
capacity of the conductors. The transient/steady-state block is discussed in more detail in Section 2.4.

The strip block (STRIP) extracts simulation data from a restart-plot file for convenient passing of
ATHENA simulation results to other computer programs.

2.3  Input Processing Overview

ATHENA provides detailed input checking for all system models using three input processing
phases. The first phase reads all input data, checks for punctuation and typing errors (such as multiple
decimal points and letters in numerical fields), and stores the data keyed by card number such that the data
are easily retrieved. A list of the input data is provided, and punctuation errors are noted.

During the second phase, restart data from a previous simulation are read if the problem is a
RESTART type, and all input data are processed. Some processed input is stored in fixed common blocks,
but the majority of the data are stored in dynamic data (common) blocks that are created only if needed by
a problem and sized to the particular problem. In a NEW-type problem, dynamic blocks must be created.
In RESTART problems, dynamic blocks may be created, deleted, added to, partially deleted, or modified
as modeling features and components within models are added, deleted, or modified. Extensive input
checking is done, but at this level, checking is limited to new data from the cards being processed.
Relationships with other data cannot be checked because the latter may not yet be processed. As an

Figure 2.2-1 ATHENA top level structure.

RELAP5

INPUTD TRNCTL STRIP
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illustration of this level of checking, junction data are checked to determine if they are within the
appropriate range (such as positive, nonzero, or between zero and one) and volume connection codes are
checked for proper format. No attempt is made at this point to check whether or not referenced volumes
exist in the problem until all input data are processed.

The third phase of processing begins after all input data have been processed. Since all data have
been placed in fixed common or dynamic data (common) blocks during the second phase, complete
checking of interrelationships can proceed. Examples of cross-checking are existence of hydrodynamic
volumes referenced in junctions and heat structure boundary conditions; entry or existence of material
property data specified in heat structures; and validity of variables selected for minor edits, plotting, or
used in trips and control systems. As the cross-checking proceeds, cross-linking of the data blocks is done
so that it need not be repeated at every time step. The initialization required to prepare the model for the
start of the transient advancement is done at this level.

Input data editing and diagnostic messages can be generated during the second and/or third phases.
Input processing for most models generates output and diagnostic messages during both phases. Thus,
input editing for these models appears in two sections.

As errors are detected, various recovery procedures are used so that input processing can be
continued and a maximum amount of diagnostic information can be furnished. Recovery procedures
include supplying default or benign data, marking the data as erroneous so that other models do not attempt
use of the data, or deleting the bad data. The recovery procedures sometimes generate additional diagnostic
messages. Often after attempted correction of input, different diagnostic messages appear. These can be
due to continued incorrect preparation of data, but the diagnostics may result from the more extensive
testing permitted as previous errors are eliminated.

2.4  Transient Overview

Figure 2.4-1 shows the functional modular structure for the transient calculations, while Figure
2.4-2 shows the second-level structures for the transient/steady-state blocks or subroutines. 

The subroutine TRNCTL shown in Figure 2.4-2 consists only of the logic to call the next lower level
routines. Subroutine TRNSET performs final cross-linking of information between data blocks, sets up
arrays to control the sparse matrix solution, establishes scratch work space, and returns unneeded computer
memory. Subroutine TRAN, the driver, controls the transient advancement of the solution. Nearly all the
execution time is spent in this block, and this block is the most demanding of memory. Nearly all the
dynamic data blocks must be in the central memory, and the memory required for instruction storage is
high, since coding to advance all models resides in this block. When transient advances are terminated, the
subroutine TRNFIN releases space for the dynamic data blocks that are no longer needed.

A description is next presented of the functions of all of the modules (subroutines) driven by TRAN

(see Figure 2.4-2).
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The level module (CHKLEV) controls the movement of two-phase levels between volumes.

The trip system module (TRIP) evaluates logical statements. Each trip statement is a simple logical
statement that has a true or false result. The decision of what action is needed resides within the
components in other modules. For example, valve components are provided that open or close the valve
based on trip values; pump components test trip status to determine whether a pump electrical breaker has
tripped.

Figure 2.4-1 Modular structures of transient calculations in ATHENA.

Figure 2.4-2 Transient/steady-state block structure.
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The equation of state boundary volume module (TSTATE) calculates the thermodynamic state of the
fluid in each hydrodynamic boundary volume (time-dependent volume). This subroutine also computes
velocities for the time-dependent junctions.

The heat structure module (HTADV) advances heat conduction/transfer solutions. It calculates heat
transferred across solid boundaries of hydrodynamic volumes.

The hydrodynamics module (HYDRO) advances the hydrodynamic solution.

The reactor kinetics module (RKIN) advances the reactor kinetics of the code. It computes the power
behavior in a nuclear reactor using the space-independent or point kinetics approximation, which assumes
that power can be separated into space and time functions. 

The control system module (CONVAR) provides the capability of simulating control systems
typically used in hydrodynamic systems. It consists of several types of control components. Each
component defines a control variable as a specific function of time-advanced quantities. The
time-advanced quantities include quantities from hydrodynamic volumes, junctions, pumps, valves, heat
structures, reactor kinetics, trip quantities, and the control variables themselves. This permits control
variables to be developed from components that perform simple, basic operations.

The time step control module (DTSTEP) determines the time step size, controls output editing, and
determines whether the transient advancements should be terminated. During program execution, this
module displays such information as CPU time, problem time, time step size, and advancement number on
the standard output, usually a terminal screen.

In the next sections of this volume of the manual, the various transient modules will be discussed.
These are in the following order: hydrodynamics, heat structures, trips, control system, reactor kinetics,
and special techniques (includes time step control).
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3  Hydrodynamic Model

The ATHENA hydrodynamic model is a transient, two-fluid model for flow of a two-phase
vapor/gas-liquid mixture that can contain noncondensable components in the vapor/gas phase and/or a
soluble component in the liquid phase. 

The ATHENA hydrodynamic model contains several options for invoking simpler hydrodynamic
models. These include homogeneous flow, thermal equilibrium, and frictionless flow models. These
options can be used independently or in combination. The homogeneous and equilibrium models were
included primarily to be able to compare code results with calculations from the older codes based on the
homogeneous equilibrium model.

The two-fluid equations of motion that are used as the basis for the ATHENA hydrodynamic model
are formulated in terms of volume and time-averaged parameters of the flow. Phenomena that depend upon
transverse gradients, such as friction and heat transfer, are formulated in terms of the bulk properties using
empirical transfer coefficient formulations. In situations where transverse gradients cannot be represented
within the framework of empirical transfer coefficients, such as subcooled boiling, additional models
specially developed for the particular situation are employed. The system model is solved numerically
using a semi-implicit finite-difference technique. The user can select an option for solving the system
model using a nearly-implicit finite-difference technique, which allows violation of the material Courant
limit. This option is suitable for steady-state calculations and for slowly varying, quasi-steady transient
calculations.

The basic two-fluid differential equations possess complex characteristic roots that give the system a
partially elliptic character and thus constitute an ill-posed initial boundary value problem. In ATHENA,
the numerical problem is rendered well-posed by the introduction of artificial viscosity terms in the
difference equation formulation that damp the high frequency spatial components of the solution. This is

discussed further in Reference 3.0-4 (Chapter 9). The ill-posed character of the two-fluid model is a result
of the spatial averaging process and neglect of higher-order physical effects in the momentum formulation.

Ransom and Hicks3.0-5,3.0-6 have studied several formulations in which two pressures (one for each fluid)
are included in the model, and these models are totally hyperbolic and thus constitute well-posed problems.

A curious feature of the two-pressure approach, that was pointed out by Trapp and Ransom,a is that a
well-posed problem is obtained without the addition of any viscous effects, which are known to be

responsible for physical stabilization in real flows. Trapp and Ransoma indicated that in this case, a
well-posed problem is obtained as a result of an unphysically large transverse inertia at short wave lengths.
In addition, the two-pressure model was developed for stratified flows having a simple interfacial
geometry, and it is unclear how to extend this concept to more general interfacial geometries. Limited

numerical studies by Ransom and Scofield3.0-7 have shown that solutions for the two-pressure model
compare very well to that for the single-pressure model with damping (i.e., artificial viscosity). In general,

a. Personal communication, J. A. Trapp and V. H. Ransom to R. A. Riemke, January 1990.
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the differences are significant only for short wavelength components of the solution where numerical
truncation error is dominant. Thus, either approach provides a valid numerical simulation at solution
component wavelengths of interest in most reactor safety problems. The simpler formulation of the
single-pressure model favors using that approach.

Ramshaw and Trapp3.0-8 developed a model in which surface tension was included such that the
phasic pressures were, in general, different. They found this model to also be well-posed and investigated
the characteristics of the model by dispersion analysis. Relative to numerical considerations they found
that, in order to achieve a stable model at the macroscale of a practical discretization interval, an artificially
large surface tension is required. They did not advocate the addition of surface tension as a means of
achieving a stable numerical model, but offered this model as a means of providing insight to the ill-posed
nature of the basic model. As with the two-pressure model, the surface tension model was developed for
stratified flows having a simple interfacial geometry, and it is unclear how to extend this concept to more
general interfacial geometries.

Trapp3.0-9 has investigated a differential model in which the Reynolds stress-like terms that appear in
the averaged formulation, but have usually been omitted, are modeled using the criterion that all unstable
behavior be eliminated. This approach results in a well-posed problem, but the model has yet to be applied.

Ransom and Mousseau3.0-10,3.0-11 have shown that the ATHENA implementation of the two-fluid
model is consistent, stable, and convergent. In particular it was shown that the use of the ill-posed
differential operator does not lead to instabilities or divergent behavior even for finer nodalization than is
practical to use in applications. In fact the behavior of the ill-posed model was shown to be very similar to
that of the well-posed two-pressure model, which is also consistent, stable, and convergent. When
contemporary constitutive models for two-phase flow are included and the model was applied to a physical
problem, convergence is obtained for a practical range of discretization interval. In no case was there an

indication of divergent or unbounded behavior. Trapp3.0-12 pointed out that no one has found a case where
a growing mode has been traced to the complex characteristics feature of the model. This is discussed

further in Volume VI (Section 4) of the manual, in Reference 3.0-4 (Chapter 9), and in Reference 3.0-13.

The semi-implicit numerical solution scheme uses a direct sparse matrix solution technique for time
step advancement. It is an efficient scheme and results in an overall grind time per node on the CRAY
XMP/24 of ~0.00053 seconds, on the DEC Alpha 3000 of ~0.00057 seconds, and on the DECstation 5000
of ~0.00259 seconds. The method has a material Courant time step stability limit. However, this limit is
implemented in such a way that single-node Courant violations are permitted without adverse stability
effects. Thus, single small nodes embedded in a series of larger nodes will not adversely affect the time
step and computing cost. The nearly-implicit numerical solution scheme also uses a direct sparse matrix
solution technique for time step advancement. This scheme has a grind time that is 25 to 60% greater than
the semi-implicit scheme but allows violation of the material Courant limit for all nodes.
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3.1  Field Equations

The ATHENA thermal-hydraulic model solves eight field equations for eight primary dependent
variables. The primary dependent variables are pressure (P), phasic specific internal energies (Ug, Uf),

vapor/gas volume fraction (void fraction) (αg), phasic velocities (vg, vf), noncondensable quality (Xn), and

boron density (ρb). The independent variables are time (t) and distance (x).  Noncondensable quality is

defined as the ratio of the noncondensable gas mass to the total vapor/gas phase mass, i.e.,

, where Mn is the mass of noncondensable in the vapor/gas phase and Ms is the mass of the

vapor in the vapor/gas phase. The secondary dependent variables used in the equations are phasic densities

(ρg, ρf), phasic temperatures (Tg, Tf), saturation temperature (Ts), and noncondensable mass fraction in

noncondensable gas phase (Xni) for the i-th noncondensable species, i.e.,

(3.1-1)

where Mni is the mass of the i-th noncondensable in the vapor/gas phase, Mn is the total mass of

noncondensable gas in the vapor/gas phase, and N is the number of noncondensables.

The basic two-fluid differential equations that form the basis for the hydrodynamic model are next
presented. This discussion will be followed by the development of a convenient form of the differential
equations that is used as the basis for the numerical solution scheme. The modifications necessary to model
horizontal stratified flow are also discussed. Subsequently, the semi-implicit scheme difference equations
and the associated time-advancement scheme are discussed. Next, the nearly-implicit scheme difference
equations and the associated time-advancement scheme are presented. Finally, the volume average
velocity formulations, implicit hydrodynamic/heat structure coupling, and the boron transport equation
numerical solution are presented.

3.1.1  Basic Differential Equations

The differential form of the one-dimensional transient field equations is first presented for a
one-component system. The modifications necessary to consider noncondensables as a component of the
vapor/gas phase and boron as a nonvolatile solute component of the liquid phase are discussed separately. 

3.1.1.1  Vapor/Liquid System. The basic field equations for the two-fluid nonequilibrium model
consist of two phasic continuity equations, two phasic momentum equations, and two phasic energy
equations. The equations are recorded in differential stream tube form with time and one space dimension

as independent variables and in terms of time and volume-average dependent variables.a The development

of such equations for the two-phase process has been recorded in several references3.1-1,3.1-2,3.1-3 and is
not repeated here. The equations are cast in the basic form with discussion of those terms that may differ

Xn
Mn

Mn Ms+
--------------------=

Xni
Mni

Mni
i 1=

N

∑
-----------------

Mni

Mn
--------= =
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from other developments. Manipulations required to obtain the form of the equations from which the
numerical scheme was developed are described in Section 3.1.2.

Mass Continuity

The phasic continuity equations are

(3.1-2)

. (3.1-3)

These equations come from the one-dimensional phasic mass equations [Equation (8.12)] in

Reference 3.1-1 as follows: Equation (8.12) can be written in area average notation wherein the term 

has been reduced to . The vapor continuity Equation (3.1-2) then is the same as Equation (8.12) using

k = g. The liquid continuity Equation (3.1-3) then is the same as Equation (8.12) using k = f. This

derivation is discussed in Chapter 8 of Reference 3.1-1.

Generally, the flow does not include mass sources or sinks, and overall continuity consideration
yields the requirement that the liquid generation term be the negative of the vapor generation, that is,

Γf  =  - Γg . (3.1-4)

The interfacial mass transfer model assumes that total mass transfer can be partitioned into mass

transfer at the vapor/liquid interface in the bulk fluid (Γig) and mass transfer at the vapor/liquid interface in

the thermal boundary layer near the walls (Γw); that is,

Γg  =  Γig + Γw . (3.1-5)

The Γig term will be developed in the following sections, and the Γw term is determined as part of the

wall heat transfer computation (Section 3.3.10).

Momentum Conservation

a. In all the field equations shown herein, the correlation coefficients3.1-1 are assumed to be unity so the average

of a product of variables is equal to the product of the averaged variables.

t∂
∂ αgρg( ) 1

A
----

x∂
∂ αgρgvgA( )+ Γg=

t∂
∂ αfρf( ) 1

A
----

x∂
∂ αfρfvfA( )+ Γf=

L
V
----

1
A
----
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The phasic conservation of momentum equations are used, and recorded here, in an expanded form
and in terms of momenta per unit volume using the phasic primitive velocity variables vg and vf. The

spatial variation of momentum term is expressed in terms of  and . This form has the desirable feature

that the momentum equation reduces to Bernoulli’s equations for steady, incompressible, and frictionless
flow. A guiding principle used in the development of the ATHENA momentum formulation is that
momentum effects are secondary to mass and energy conservation in reactor safety analysis and a less
exact formulation (compared to mass and energy conservation) is acceptable, especially since nuclear
reactor flows are dominated by large sources and sinks of momentum (i.e., pumps, abrupt area change). A
primary reason for use of the expanded form is that is it more convenient for development of the numerical
scheme. The momentum equation for the vapor/gas phase is

(3.1-6)

and for the liquid phase is

(3.1-7)

These equations come from the one-dimensional phasic momentum equations [Equation (8.13)] in

Reference 3.1-1 with the following simplifications: the Reynolds stresses are neglected, the phasic
pressures are assumed equal, the interfacial pressure is assumed equal to the phasic pressures (except for
stratified flow), the covariance terms are universally neglected (unity assumed for covariance multipliers),
interfacial momentum storage is neglected, phasic viscous stresses are neglected, the interface force terms
consist of both pressure and viscous stresses, and the normal wall forces are assumed adequately modeled
by the variable area momentum flux formulation. The phasic continuity equations are multiplied by the
corresponding phasic velocity, and the resulting equations are subtracted from the momentum equations.
The vapor/gas momentum Equation (3.1-6) is the same as the resulting vapor/gas momentum equation
from Equation (8.13) using k = g; the liquid momentum Equation (3.1-7) is the same as the resulting liquid

momentum equation from Equation (8.13) using k = f. This is discussed in Chapter 8 of Reference 3.1-1.

The force terms on the right sides of Equations (3.1-6) and (3.1-7) are, respectively, the pressure
gradient, the body force (i.e., gravity and pump head), wall friction, momentum transfer due to interface

vg
2 vf

2

αgρgA∂vg

∂t
-------- 1

2
---αgρgA∂vg

2

∂x
--------+ αgA∂P

∂x
------– αgρgBxA αgρgA( )FWG vg( )–+=

ΓgA vgI vg–( ) αgρgA( )FIG vg vf–( )–+

 CαgαfρmA ∂ vg vf–( )
∂t

----------------------- vf
∂vg

∂x
-------- vg

∂vf

∂x
-------–+–

αfρfA
∂vf

∂t
------- 1

2
---αfρfA

∂vf
2

∂x
--------+ αfA

∂P
∂x
------– αfρfBxA αfρfA( )FWF vf( )–+=

– ΓgA vfI vf–( ) αfρfA( )FIF vf vg–( )–

 CαfαgρmA ∂ vf vg–( )
∂t

----------------------- vg
∂vf

∂x
------- vf

∂vg

∂x
--------–+ .–
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mass transfer, interface frictional drag, and force due to virtual mass. The terms FWG and FWF are part of
the wall frictional drag, which are linear in velocity, and are products of the friction coefficient, the
frictional reference area per unit volume, and the magnitude of the fluid bulk velocity. The interfacial
velocity in the interface momentum transfer term is the unit momentum with which phase appearance or
disappearance occurs. The coefficients FIG and FIF are part of the interface frictional drag; two different
models (drift flux and drag coefficient) are used for the interface friction drag, depending on the flow

regime. The coefficient of virtual mass is based on that used by Anderson3.1-4 in the RISQUE code, where
the value for C depends on the flow regime. A value of C > 1/2 has been shown to be appropriate for

bubbly or dispersed flows,3.1-5, 3.1-6 while C = 0 may be appropriate for a separated or stratified flow. At
present, a value of C > 1/2 is used for all flow regimes. This is discussed in Section 3.3.

The virtual mass term listed in Equations (3.1-6) and (3.1-7) is the same objective formulation3.1-7,

3.1-8 used in RELAP5/MOD1. In the ATHENA coding, however, this term is simplified. In particular, the
spatial derivative portion of the term is neglected. The reason for this change is that inaccuracies in
approximating the spatial derivative portion of the term for the relatively coarse nodalizations used in
system representations can lead to nonphysical characteristics in the numerical solution. The primary
effect of the virtual mass term is on the mixture sound speed; thus, the simplified form is adequate, since

critical flows are calculated in ATHENA using an integral model3.1-9 in which the sound speed is based on
an objective formulation for the added mass terms.

Conservation of momentum at the interface requires that the force terms associated with interface
mass and momentum exchange sum to zero, and is shown as

(3.1-8)

where the spatial derivatives have been eliminated as explained above.

This particular form for interface momentum balance results from consideration of the momentum
equations in unexpanded form. The force terms associated with virtual mass acceleration in Equation
(3.1-8) sum to zero identically as a result of the particular form chosen. In addition, it is usually assumed
(although not required by any basic conservation principle) that the interface momentum transfer due to
friction and due to mass transfer independently sum to zero, that is,

vgI  = vfI  = vI (3.1-9)

and

ΓgAvgI αgρgA( )FIG vg vf–( )– CαgαfρmA ∂ vg vf–( )
∂t

-----------------------–

ΓgAvfI– αfρfA( )FIF vf vg–( )– CαfαgρmA ∂ vf vg–( )
∂t

-----------------------– 0=
INEEL-EXT-98-00834-V1 3-8



ATHENA/2.3
αgρgFIG = αfρfFIF = αgαfρgρfFI . (3.1-10)

These conditions are sufficient to ensure that Equation (3.1-8) is satisfied.

Energy Conservation

The phasic thermal energy equations are

(3.1-11)

(3.1-12)

These equations come from the one-dimensional phasic thermal energy equations [Equation (8.16)]

in Reference 3.1-1 with the following simplifications: the Reynolds heat flux is neglected, the covariance
terms are universally neglected (unity assumed for covariance multipliers), interfacial energy storage is
neglected, and internal phasic heat transfer is neglected. The vapor/gas thermal energy Equation (3.1-11) is
the same as the resulting vapor/gas thermal energy equation from Equation (8.16) using k = g; the liquid
thermal energy Equation (3.1-12) is the same as the resulting liquid thermal energy equation from

Equation (8.16) using k = f. This derivation is discussed in Chapter 8 of Reference 3.1-1.

In the phasic energy equations, Qwg and Qwf are the phasic wall heat transfer rates per unit volume

(see Section 3.3.9). These phasic wall heat transfer rates satisfy the equation

Q   =  Qwg + Qwf (3.1-13)

where Q is the total wall heat transfer rate to the fluid per unit volume.

The phasic specific enthalpies  associated with bulk interface mass transfer in Equations

(3.1-11) and (3.1-12) are defined in such a way that the interface energy jump conditions at the

liquid-vapor interface are satisfied. In particular, the  and  are chosen to be  and hf, respectively,

for the case of vaporization and hg and , respectively, for the case of condensation. The same is true for

the phasic specific enthalpies  associated with wall (thermal boundary layer) interface mass

transfer. The logic for this choice will be further explained in the development of the mass transfer (vapor
generation) model.

t∂
∂ αgρgUg( ) 1

A
----

x∂
∂ αgρgUgvgA( )+  P∂αg

∂t
---------  P

A
----

x∂
∂ αgvgA( )––=

Q+ wg Qig Γighg
* Γwhg

′ DISSg+ + + +

t∂
∂ αfρfUf( ) 1

A
----

x∂
∂ αfρfUfvfA( )+  P∂αf

∂t
--------  P

A
----

x∂
∂ αfvfA( )––=

Q+ wf Qif  Γig– hf
*   Γw– hf

′ DISSf .+ +

hg
* hf

* ,( )

hg
* hf

* hg
s

hf
s

hg
′ hf

′,( )
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Vapor Generation

The vapor generation (or condensation) consists of two parts, vapor generation which results from

energy exchange in the bulk fluid (Γig) and energy exchange in the thermal boundary layer near the wall

(Γw) [see Equation (3.1-5)]. Each of the vapor generation (or condensation) processes involves interface

heat transfer effects. The interface heat transfer terms (Qig and Qif) appearing in Equations (3.1-11) and

(3.1-12) include heat transfer from the fluid states to the interface due to interface energy exchange in the
bulk and in the thermal boundary layer near the wall. The vapor generation (or condensation) rates are
established from energy balance considerations at the interface.

The discussion that follows assumes there is one wall (heat structure) that is next to the fluid. In some
applications, there can be multiple walls (heat structures) next to the fluid. For this case, there can be
flashing in the thermal boundary layer near some walls (i.e., hot walls) and condensation in the thermal
boundary layer near the other walls (i.e., cold walls). The case of multiple walls is discussed in Section
3.1.7 of this volume of the manual as well as in Volume IV.

The summation of Equations (3.1-11) and (3.1-12) produces the mixture energy equation, from
which it is required that the interface transfer terms sum to zero, that is,

. (3.1-14)

The interface heat transfer terms (Qig and Qif) consist of two parts, that is, interface heat transfer in

the bulk  and interface heat transfer in the thermal boundary layer near the wall

. This is one situation where the assumption of no transverse gradients needs to be

supplemented by a special model. The interface heat transfer terms are shown in Figure 3.1-1 for the case
of subcooled boiling. 

The two parts are additive, that is,

(3.1-15)

and

. (3.1-16)

The bulk interface heat transfer is at the vapor-liquid interface in the bulk. This represents thermal

energy exchange between the fluid interface (at the saturation temperature Ts corresponding to the total
pressure P) and the bulk fluid state.

Qig Qif Γig hg
* hf

*–( ) Γw hg
′ hf

′–( )+ + + 0=

Qig
B  and Qif

B( )

Qig
W and Qif

W( )

Qig Qig
B Qig

W+=

Qif Qif
B Qif

W+=
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For vapor, the bulk interface heat transfer is given by

(3.1-17)

where Hig is the vapor interface heat transfer coefficient per unit volume and Tg is the vapor temperature.

For liquid, the bulk interface heat transfer is given by

(3.1-18)

where Hif is the liquid interface heat transfer coefficient per unit volume and Tf is the liquid temperature.

The  terms are the interface heat transfer rates near the wall and will be defined in terms

of the wall vapor generation (or condensation) process. This is discussed in more detail in Volume IV.
Inserting Equations (3.1-17) and (3.1-18) into Equations (3.1-15) and (3.1-16) gives

(3.1-19)

and

Figure 3.1-1 Interface heat transfer in the bulk and near the wall for subcooled boiling.

Qif Qif

Qig

W B

B

WALL

bulk regionnear wall region

Qig
B Hig Ts Tg–( )=

Qif
B Hif Ts Tf–( )=

Qig
W and Qif

W

Qig Hig Ts Tg–( ) Qig
W+=
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. (3.1-20)

Although it is not a fundamental requirement, it is assumed that Equation (3.1-14) will be satisfied by
requiring that the bulk interface energy exchange terms and the near wall interface energy exchange terms
each sum to zero independently. Thus,

(3.1-21)

and

. (3.1-22)

In addition, since it is assumed that vapor appears at saturation, it follows that  for boiling

processes in the boundary layer near the wall. Equation (3.1-22) can then be used to solve for the interface
vaporization rate in the boundary layer near the walls, which is

. (3.1-23)

Similarly, since it is assumed that liquid appears at saturation, it follows that  for

condensation processes in the boundary layer near the wall. Equation (3.1-22) can then be used to solve for
the interface condensation rate in the boundary layer near the walls, which is

. (3.1-24)

Solving Equation (3.1-23) and (3.1-24) for  and , and substituting these terms into Equations

(3.1-19) and (3.1-20), the interface energy transfer terms, Qig and Qif, can thus be expressed in a general

way as

(3.1-25)

and

Qif Hif Ts Tf–( ) Qif
W+=

Hig Ts Tg–( ) Hif Ts Tf–( ) Γig hg
* hf

*–( )+ + 0=

Qig
W Qif

W Γw hg
′ hf

′–( )+ + 0=

Qig
W 0=

Γw
 Qif

W–

hg
′ hf

′–
---------------=

Qif
W 0=

Γw
 Qig

W–

hg
′ hf

′–
---------------=

Qif
W Qig

W

Qig Hig Ts Tg–( ) 1 ε–
2

----------- 
  Γw hg

′ hf
′–( )–=
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, (3.1-26)

where ε = 1 for boiling in the boundary layer near the wall, and ε = -1 for condensation in the boundary
layer near the wall. Finally, Equation (3.1-14) can be used to solve for the interface vaporization (or
condensation) rate in the bulk fluid, which is

, (3.1-27)

which, upon substitution of Equations (3.1-25) and (3.1-26), becomes

. (3.1-28)

The phase change process that occurs at the interface is envisioned as a process in which bulk fluid is
heated or cooled to the saturation temperature and phase change occurs at the saturation state. The
interface energy exchange process from each phase must be such that at least the sensible energy change to
reach the saturation state occurs. Otherwise, it can be shown that the phase change process implies energy
transfer from a lower temperature to a higher temperature. Such conditions can be avoided by the proper

choice of the variables  and  for bulk interface mass transfer and  and  for near wall interface

mass transfer. In particular, it can be shown that  and  should be

(3.1-29)

and

(3.1-30)

where

η = 1 for Γig > 0

= - 1 for Γig < 0.

Qif Hif Ts Tf–( ) 1 ε+
2

------------ 
  Γw hg

′ hf
′–( )–=

Γig
Qig Qif+

hg
* hf

* –
---------------------– Γw
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′ hf

′–( )

hg
* hf

* –
--------------------–=
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-----------------------------------------------------------------–=
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2
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3-13 INEEL-EXT-98-00834-V1



ATHENA/2.3
It can also be shown that  and  should be

(3.1-31)

and

(3.1-32)

where

ε = 1 for Γw > 0

= - 1 for Γw < 0.

Substituting Equation (3.1-28) into Equation (3.1-5) gives the final expression for the total interface
mass transfer as

. (3.1-33)

Volume IV of the manual discusses the energy partitioning in more detail.

Dissipation Terms

The phasic energy dissipation terms, DISSg and DISSf, are the sums of wall friction, pump, and

turbine effects. The dissipation effects due to interface mass transfer, interface friction, and virtual mass
are neglected. This is a reasonable assumption since these terms are small in magnitude in the energy
equation. In the mass and momentum equations, interface mass transfer, interface friction, and virtual mass
are important and are not neglected. The wall friction dissipations are defined as

(3.1-34)

and

. (3.1-35)

hg
′ hf

′

hg
′ 1

2
--- hg

s hg+( ) ε hg
s hg–( )+[ ]=

hf
′ 1

2
--- hf

s hf+( )  ε– hf
s hf–( )[ ]=

Γg
Hig Ts Tg–( ) Hif Ts Tf–( )+

hg
* hf

* –
-----------------------------------------------------------------– Γw+=

DISSg  αgρg FWG vg
2=

DISSf  αfρf FWF vf
2=
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The phasic energy dissipation terms satisfy the relation

DISS  =  DISSg + DISSf (3.1-36)

where DISS is the energy dissipation. When a pump component is present, the associated energy
dissipation is also included in the dissipation terms (see Section 3.5.4). When a turbine component is
present, an appropriate heat source is used which is also included in the dissipation terms (see Section
3.5.5).

3.1.1.2  Noncondensables in the Vapor/Gas Phase. The basic, two-phase, single-component
model just discussed can be extended to include a noncondensable component in the vapor/gas phase. The
noncondensable component is assumed to move with the same velocity and have the same temperature as
the vapor phase, so that

vn  =  vg (3.1-37)

and

Tn  =  Tg (3.1-38)

where the subscript, n, is used to designate the noncondensable component. The vapor/noncondensable
mixture conditions can still be nonhomogeneous and nonequilibrium compared to the liquid and saturation
conditions.

The general approach for inclusion of the noncondensable component consists of assuming that all
properties of the vapor/gas phase (subscript g) are mixture properties of the vapor/noncondensable
mixture. The static quality, X, is likewise defined as the mass fraction based on the mass of the vapor/gas
phase. Thus, the two basic continuity equations [Equations (3.1-2) and (3.1-3)] are unchanged. However, it
is necessary to add an additional mass conservation equation for the total noncondensable component,
given by 

(3.1-39)

where

Xn = total noncondensable mass fraction in the vapor/gas phase

∂
∂t
---- αgρgXn( ) 1

A
----

x∂
∂ αgρgXnvgA( )+ 0=
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= (3.1-40)

Mni = mass of i-th noncondensable gas

Mn = total mass of noncondensable gas in the vapor/gas phase

Ms = mass of vapor in the vapor/gas phase

N = number of noncondensables.

For each noncondensable specie, the mass conservation equation is

(3.1-41)

where Xni is defined in Equation (3.1-1). Only N-1 of the noncondensable gas specie equations need to be

solved since the mass fraction of the N-th specie can be found as the difference between the total
noncondensable gas mass fraction and the sum of the N-1 noncondensable gas specie mass fractions.

The energy equations are modified to include the sensible interface (direct) heating term Qgf. This

term is necessary because the interfacial terms use saturation temperature based on the bulk vapor partial
pressure rather than saturation temperature based on the local (interface) vapor partial pressure. This is
another situation in which the assumption of no transverse gradients in the one-dimensional formulation of
the conservation equations needs to be supplemented by a special model. The energy field equations have
the form

(3.1-42)

(3.1-43)

The term Qgf in Equations (3.1-42) and (3.1-43) is the sensible heat transfer rate per unit volume.

This is the heat transfer at the noncondensable gas-liquid interface, and it represents thermal energy

Mni
i 1=

N

∑

Mni Ms+
i 1=

N

∑
---------------------------------

Mn
Mn Ms+
---------------------=

∂
∂t
---- αgρgXnXni( ) 1

A
----

x∂
∂ αgρgXnXnivgA( )+ 0=

∂
∂t
---- αgρgUg( ) 1

A
---- ∂

∂x
------ αgρgUgvgA( )+ P∂αg

∂t
---------– P

A
---- ∂

∂x
------ αgvgA( )–=

Qwg Qig Γighg
* Γwhg

′ Qgf– DISSg+ + + + +

∂
∂t
---- αfρfUf( ) 1

A
---- ∂

∂x
------ αfρfUfvfA( )+ P∂αf

∂t
--------– P

A
---- ∂

∂x
------ αfvfA( )–=

Qwf Qif  Γig– hf
*   Γw– hf

′  Q+ gf DISSf  .+ + +
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exchange between the bulk fluid states themselves when noncondensable gas is present. This term is given
by

(3.1-44)

where Hgf is the sensible (direct) heat transfer coefficient per unit volume. This makes use of Dalton’s law

(P = Ps + Pn), where Pn is the noncondensable gas partial pressure. This term is similar to the heat

conduction term in the accumulator model (see Section 3.5.7.2). The multiplier based on the difference in
the total pressure and the partial pressure of vapor is an ad-hoc function used to turn off this term when
there is no noncondensable gas in the volume. The value of the heat transfer coefficient depends upon the
configuration of the interface (i.e., flow regime) between the liquid and the noncondensable gas just like
the situation for the vapor-liquid interface.

The interfacial heat transfer and mass transfer terms are also modified when noncondensables are
present. The vapor/gas bulk interface heat transfer [Equation (3.1-17)] now has the form

, (3.1-45)

where the fluid interface is assumed to be at the saturation temperature Ts(Ps) corresponding to the partial

pressure of vapor (Ps).

Thus, the total vapor/gas interfacial heat transfer [Equation (3.1-19)] now has the form

. (3.1-46)

The assumption that the bulk interface exchange terms sum to zero [Equation (3.1-21)], now has the
form

. (3.1-47)

Thus, the total vapor/gas interface energy transfer term [Equation (3.1-25)] is now expressed as

. (3.1-48)

Qgf
P Ps–

P
-------------- 

  Hgf Tg Tf–( )
Pn

P
-----Hgf Tg Tf–( )= =

Qig
B Ps

P
-----Hig Ts Ps( ) Tg–[ ]=

Qig
Ps

P
-----Hig Ts Ps( ) Tg–[ ] Qig

W+=

Ps

P
-----Hig Ts Ps( ) Tg–[ ] Hif Ts Ps( ) Tf–[ ] Γig hg

* hf
*–( )+ + 0=

Qig
Ps

P
-----Hig Ts Ps( ) Tg–[ ] 1 ε–

2
----------- 

  Γw hg
′ hf

′–( )–=
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The bulk interface mass transfer rate [Equation (3.1-28)] now has the form

(3.1-49)

and the total interface mass transfer rate [Equation (3.1-33)] now has the form

. (3.1-50)

Volume IV of the manual discusses the energy partitioning in more detail.

The vapor saturation specific enthalpy  used for the vapor specific enthalphy , and the liquid

saturation specific enthalpy  used  for the liquid specific enthalpy  , which are used in the energy field

equations and in the mass transfer Γg, are based on the partial pressure of vapor instead of the total pressure

when noncondensables are present.

The momentum field equations are unchanged when noncondensables are present. In all the
equations, the vapor/gas field properties are now evaluated for the vapor/noncondensable mixture. The
modifications appropriate to the state relationships are discussed in Section 3.2.3.

3.1.1.3  Boron Concentration in the Liquid Field. An Eulerian boron tracking model is used
in ATHENA that simulates the transport of a dissolved component (solute) in the liquid phase (solvent).
The solution is assumed to be sufficiently dilute that the following assumptions are valid:

• Liquid (solvent) properties are not altered by the presence of the solute.

• Solute is transported only in the liquid phase (solvent) and at the velocity of the liquid
phase (solvent).

• Energy transported by the solute is negligible.

• Inertia of the solute is negligible.

Under these assumptions, only an additional field equation for the conservation of the solute (i.e.,
boron) is required. In differential form, the added equation is

Γig  

Ps

P
-----Hig Ts Ps( ) Tg–[ ] Hif Ts Ps( ) Tf–[ ]+

hg
* hf

*–
-------------------------------------------------------------------------------------------–=

Γg

Ps

P
-----Hig Ts Ps( ) Tg–[ ] Hif Ts Ps( ) Tf–[ ]+

hg
* hf

*–
-------------------------------------------------------------------------------------------– Γw+=

hg
s hg

*

hf
s hf

*
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(3.1-51)

where the spatial boron density, ρb, is defined as

. (3.1-52)

Cb is the concentration of boron (mass of boron per mass of liquid), ρb is the spatial boron density

(mass of boron per total volume of liquid and vapor/gas), and X is the static quality.

3.1.1.4  Radionuclide Transport Model

An Eulerian radionuclide transport model is used in ATHENA to simulate the transport of
radioactive or fertile nuclides in the reactor coolant systems (fertile nuclides are those nuclides that can be
made radioactive by neutron capture). The model can be used in connection with the nuclear detector
model to describe the response of the control and safety systems to the presence of radioactive species in
the coolant systems. The radionuclide species may be transported by either the liquid or vapor/gas phases.
A radioactive species may be created by neutron absorption in a fertile specie (i.e., nitrogen 16 may be
created by an (n,p) reaction with the oxygen 16 in the water coolant in the reactor core) or may be injected
into the coolant system using general tables or control variables. For example,  general tables or control
variables may be used to model the release of a radionuclide specie from fuel rods due to bursting during a
transient or through pinhole leaks that develop due to erosion, fretting, or manufacturing defects in the fuel
rod cladding or through leaching of the nuclide from the structural material in the reactor system (i.e.,
cobalt 59 is leached out of steel in the reactor system by the cooant and becomes available to be transmuted
to cobalt 60 through neutron capture as it circulates through the reactor core). A radionuclide specie may
also be destroyed by neutron absorption (i.e., transmuted to a radioactive or nonradioactive daughter
specie). The concentration of radionuclide species are assumed to be sufficiently dilute that assumptions
similar to those for the boron transport model are valid:

• The fluid properties (liquid of vapor/gas) are not altered by the presence of radionuclide
species.

• Energy absorbed by the transporting phase from the decay of radionuclide species is
negligable.

• The radionuclide species are well mixed with the transporting phase so that they are
transported at the phase velocity.

Under these assumptions, the equation for the conservation of  mass for a radionuclide specie is

∂ρb

∂t
-------- 1

A
----

∂ ρbvfA( )
∂x

-----------------------+ 0=

ρb αfρfCb ρm 1 X–( )Cb= =
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(3.1-53)

where C is the number density of the radionuclide  specie in atoms per unit volume, v is the velocity of the
transporting phase, A is the cross sectional area of the flow duct, and S is the source of the radionuclide
specie in units of atoms per unit volume per second. The number density C may be converted to the mass
density as

where ρ is the mass density of the radionuclide specie in units of mass per unit volume (i.e., kg/m3), Na is

Avogradro’s number (atoms per kg-mole), and Mw is the moelcular weight of the radionuclide specie
(kg/kg-mole).

3.1.1.5  Stratified Flow. Flow at low velocity in a horizontal pipe can be stratified as a result of
buoyancy forces caused by density differences between vapor/gas and liquid. When the flow is stratified,
the area average pressures are affected by nonuniform transverse distribution of the phases. Appropriate
modifications to the basic field equations when stratified flow exists are obtained by considering separate
area average pressures for the vapor/gas and liquid phases and the interfacial pressure between them.
Using this model, the pressure gradient force terms of Equations (3.1-6) and (3.1-7) become

(3.1-54)

and

. (3.1-55)

The area average pressure for the entire cross-section of the flow is expressed in terms of the phasic
area average pressures by

P  =  αgPg + αfPf . (3.1-56)

With these definitions, the sum of the phasic momentum equations, written in terms of the
cross-section average pressure (see Section 3.1.2) remains unchanged. However, the difference of the
phasic momentum equations (see Section 3.1.2), contains the following additional terms on the right side

t∂
∂C 1

A
----

x∂
∂ CvA( )+ S=

ρ CMw
Na

--------------=

αgA∂P
∂x
------   →– αgA∂Pg

∂x
--------– PI Pg–( )A∂αg

∂x
---------+

αfA
∂P
∂x
------   →– αfA

∂Pf

∂x
--------– PI Pf–( )A∂αf

∂x
--------+
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. (3.1-57)

The interface and phasic cross-sectional average pressures, PI, Pg, and Pf, can be found by means of

the assumption of a transverse hydrostatic pressure in a round pipe. For a pipe having diameter D,
pressures PI, Pg, and Pf are given by

(3.1-58)

(3.1-59)

where By equals the transverse body force (ordinarily equal to -g).

The central angle, θ, is defined by the void fraction, as illustrated in Figure 3.1-2. The algebraic

relationship between αg and θ is 

αgπ  =  θ - sinθcosθ . (3.1-60)

The additional terms in the difference of the momentum equations [Equation (3.1-57)] can be
simplified using Equations (3.1-58), (3.1-59), and (3.1-60) to obtain the term

Figure 3.1-2 Relation of central angle θ to void fraction αg.

ρ
αgαfρgρf
---------------------- 

  αf
∂ αgPg( )

∂x
-------------------– αg

∂ αfPf( )
∂x

------------------ PI
∂αg

∂x
---------+ +

Pg PI ρgByD sin3θ
3παg
------------ θcos

2
------------– 

 –=

Pf PI ρfByD sin3θ
3παf
------------ θcos

2
------------– 

 –=

Liquid

Vapor/gas
θ

°

Vapor/gas area = αgA

Liquid area = αfA
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(3.1-61)

where θ is related to the void fraction using Equation (3.1-60).

This equation can be rearranged to show more explicitly the dependence on the liquid level y as
measured from the bottom of the pipe. Using Equation (3.1-60) along with

, (3.1-62)

the term (3.1-61) becomes

. (3.1-63)

For the phasic momentum Equations (3.1-6) and (3.1-7), the additional term takes the form

(3.1-64)

for the vapor/gas momentum equation and

(3.1-65)

for the liquid momentum equation. The preceding two equations are listed for informational purposes only,
since the sum and difference of the phasic momentum equations is used in the numerical scheme.

To model a pipe of varying diameter, the liquid level is measured with respect to the center of the
pipe rather than the bottom of the pipe. Equations (3.1-63), (3.1-64), and (3.1-65) are still valid; however,
Equation (3.1-63) is replaced by

. (3.1-66)

 ρm

ρgρf
---------- 

 – ρf ρg–( )
πDBy

4 θsin
-------------- 

  ∂αg

∂x
---------

y D
2
---- 1 θcos+( )=

ρm

ρgρf
---------- 

  ρf ρg–( )By
∂y
∂x
------

αgαf ρf ρg–( )
αfρf αgρg–

--------------------------------- ρmByA∂y
∂x
------+

–
αgαf ρf ρg–( )
αfρf αgρg–

--------------------------------- ρmByA∂y
∂x
------

y D
2
---- θcos=
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This new reference point is then at constant elevation in a horizontal pipe. For a varying area or
constant area pipe, Equation (3.1-63) behaves correctly in that there is no head if the absolute level of the
liquid is constant.

To take account of possible orifices, a junction diameter is estimated and the horizontal volume
liquid levels are restrained to be within the range of this diameter. Thus, in the limit of a closed junction
there will be no driving head term.

A ATHENA horizontal pipe need not be absolutely horizontal; it can have a slope of angle φelev, the

elevation angle. There may also be a change of slope at the junction between two volumes. The modeling
for this does not have a firm physical basis but has appropriate limiting behavior. The volume liquid levels

are multiplied by cosφelev which is unity for a horizontal volume. If the slopes of the two volumes are

different then an extra term is added to the level difference. This term is proportional to the sine of the
difference of the absolute values of the two slope angles. The sign and magnitude of the “constant” of
proportionality are such that the following two conditions are met:

1. When a vertical volume is above a horizontal volume, the liquid level difference term is
zero.

2. When a vertical volume is below a horizontal volume, the liquid level difference term is as
if the liquid level in the vertical volume is at the bottom of the connecting orifice.

The above two limits ensure that liquid is not pushed upward, but can drain if required. When
non-horizontal volumes have a significant liquid content, the normal head terms will be dominant.

The additional force term that arises for a stratified flow geometry in horizontal pipes is added to the
basic equation when the flow is established to be stratified from flow regime considerations. Note that the
additional force term was derived assuming a round pipe. If the cross-section is rectangular, this
assumption is not valid.

A similar term is added when there is stratified flow in a series of cells defined as vertically oriented
but are cross-connected in the horizontal direction. Equations (3.1-63), (3.1-64), and (3.1-65) are still used;
however, Equation (3.1-62) is replaced with 

(3.1-67)

where ∆z is the elevation of the volume.

In order to provide for a smooth transition between stratified and nonstratified flow situations, this
term is activated in all flow regimes. Since this term is small compared to other terms in the momentum
equation when the flow is nonstratified, this is a reasonable assumption.

y 1 2αg–
2

------------------ ∆z=
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3.1.2  Numerically Convenient Set of Differential Equations

A more convenient set of differential equations upon which to base the numerical scheme is obtained
from the expanded momentum difference equations [Equations (3.1-6) and (3.1-7)] and by expanding the
time derivative (using the product rule) in the basic density and energy differential equations [Equations
(3.1-2), (3.1-3), (3.1-39), (3.1-42), and (3.1-43)]. When the product rule is used to evaluate the time
derivative, we will refer to this form as the expanded form. The mass and momentum equations are used as
sum and difference equations in the numerical scheme and are recorded here in that form. The reason for
using this form is ease of degeneration of the model to the single-phase case.

A sum density equation is obtained by expanding the time derivative in the phasic density equations,
Equations (3.1-2) and (3.1-3), adding these two new equations, and using the relation

. (3.1-68)

This gives

. (3.1-69)

A difference density equation is obtained by expanding the time derivative in the phasic density
equations, Equations (3.1-2) and (3.1-3), subtracting these two new equations, again using the relation

(3.1-70)

and substituting Equation (3.1-50) for Γg. This gives

(3.1-71)

The time derivative of the total noncondensable density equation, Equation (3.1-39), is expanded to
give

∂αf

∂t
--------  ∂αg

∂t
---------–=

αg
∂ρg

∂t
-------- αf

∂ρf

∂t
-------- ρg ρf–( )

∂αg

∂t
--------- 1

A
----

x∂
∂ αgρgvgA αfρfvfA+( )+ + + 0=

∂αf

∂t
--------  ∂αg

∂t
---------–=

αg
∂ρg

∂t
-------- αf

∂ρf

∂t
--------– ρg ρf+( )

∂αg

∂t
--------- 1

A
----

x∂
∂ αgρgvgA αfρfvfA–( )+ +

2 Ps

P
-----Hig Ts Tg–( ) Hif Ts Tf–( )+

hg
* hf

*–
--------------------------------------------------------------------------------– 2Γw .+=
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. (3.1−72)

The time derivative of the individual noncondensable density equation, Equation (3.1-41), is not
expanded, since the individual noncondensable quality, Xni, will be obtained from the unexpanded

equation (Section 3.1.4.1).

The momentum equations are also rearranged into a sum and difference form. The sum momentum
equation is obtained by direct summation of Equations (3.1-6) and (3.1-7) with the interface conditions
[Equations (3.1-8) through (3.1-10)] substituted where appropriate and the cross-sectional area canceled
throughout. The resulting sum equation is

(3.1−73)

 The difference of the phasic momentum equations is obtained by first dividing the vapor/gas and

liquid phasic momentum equations [Equations (3.1-6) and (3.1-7)] by αgρgA and αfρfA, respectively, and

subtracting. Here again, the interface conditions are used, and the common area is divided out. As
previously discussed, the virtual mass term is simplified by neglecting the spatial derivative portion and
the additional stratified force term (see Section 3.1.1.5) is added. The resulting equation is

(3.1-74)

where the interfacial velocity, vI, is defined as

vI  =  λvg + (1 - λ)vf . (3.1-75)

This definition for vI has the property that if λ = 1/2 the interface momentum transfer process

associated with mass transfer is reversible. This value leads to either an entropy sink or source, depending

on the sign of Γg. However, if λ is chosen to be 0 for positive values of Γg and +1 for negative values of Γg

ρgXn
∂αg

∂t
--------- αgXn

∂ρg

∂t
-------- αgρg

∂Xn

∂t
--------- 1

A
---- ∂

∂x
------ αgρgXnvgA( )+ + + 0=

αgρg
∂vg

∂t
-------- αfρf

∂vf

∂t
------- 1

2
---αgρg

∂vg
2

∂x
-------- 1

2
---αfρf

∂vf
2

∂x
--------+ + + ∂P

∂x
------– ρmBx+=

αgρgFWGvg– αfρfFWFvf– Γg vg vf–( ) .–

∂vg

∂t
--------

∂vf

∂t
-------– 1

2
---

∂vg
2

∂x
-------- 1

2
---

∂vf
2

∂x
--------–+  1

ρg
----- 1

ρf
----– 

  ∂P
∂x
------–=

 FWGvg F+ WFvf–

Γg ρmvI αfρfvg αgρgvf+( )–[ ]
αgρgαfρf

------------------------------------------------------------------------ ρmFI vg vf–( )–+

C ρm
2

ρgρf
----------

∂ vg vf–( )
∂t

-----------------------–
ρm

ρgρf
---------- 

  ρf ρg–( )By
∂y
∂x
------+
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(that is, a donor formulation), the mass exchange process is always dissipative. The latter model for vI is

the most realistic for the momentum exchange process and is used for the numerical scheme development.

 To develop an expanded form of the vapor/gas energy equation, the time derivative of the vapor/gas

energy Equation (3.1-42) is expanded, Qig Equation (3.1-48) and the Γig Equation (3.1-49) are substituted,

and the Hig, Hif, , and convective terms are collected. This gives the desired form for the vapor/gas

energy equation, which is

(3.1-76)

 To develop an expanded form of the liquid energy equation, the time derivative of the liquid energy

Equation (3.1-43) is expanded, the Qif Equation (3.1-26) and the Γig Equation (3.1-49) are substituted, and

(3.1-77)

is used. Then the Hig, Hif, , and convective terms are collected. This gives the desired form for the

liquid energy equation, which is

(3.1-78)

 The basic density and energy differential equations are, at times, used in unexpanded form in the
back substitution part of the numerical scheme. When the product rule is not used to evaluate the time
derivative, we will refer to this form as the unexpanded form. There are situations after a phase has
appeared in a volume, where unphysical energies are calculated by the expanded form of the energy

∂αg
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equations. It was found that the unexpanded form, when used in the back substitution step, gave more
physical temperatures because there is no linearization error in the time derivative when using the
unexpanded form of the energy equations.

The vapor/gas, liquid, and noncondensable density equations, Equations (3.1-2), (3.1-3), and

(3.1-39), are in unexpanded form. The Γg, Equation (3.1-50), is not substituted into the vapor/gas and

liquid density equations. (The reason will be apparent in Section 3.1.4.) The vapor/gas energy equation,
Equation (3.1-42), is altered by substituting Equation (3.1-48) for Qig, substituting Equation (3.1-49) for

Γig, and collecting the Hig, Hif, and convective terms. This gives

(3.1-79)

The liquid energy equation, Equation (3.1-43), is also altered by substituting Equation (3.1-26) for

Qif, substituting Equation (3.1-49) for Γig, using Equation (3.1-77), and collecting the Hig, Hif, and

convective terms. This gives

(3.1-80)

3.1.3  Semi-Implicit Scheme Difference Equations

The semi-implicit numerical solution scheme is based on replacing the system of differential
equations with a system of finite difference equations partially implicit in time. The terms evaluated
implicitly are identified as the scheme is developed. In all cases, the implicit terms are formulated to be
linear in the dependent variables at new time. This results in a linear time-advancement matrix that is

solved by direct inversion using the default border-profile LU solver.3.1-10  The previously used sparse

matrix solver3.1-11 can also be used and is activated by the user in the input data. An additional feature of
the scheme is that implicitness is selected such that the field equations can be reduced to a single difference
equation per fluid control volume or mesh cell, which is in terms of the hydrodynamic pressure. Thus, only

∂
∂t
---- αgρgUg( ) 1

A
---- ∂

∂x
------ αgρgUgvgA( ) P ∂

∂x
------ αgρgA( )++

 P∂αg

∂t
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*

hg
* hf

*–
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 
 
  Ps

P
-----Hig Ts Tg–( ) –  hg

*

hg
* hf

*–
----------------

 
 
 

Hif Ts Tf–( ) –  P P– s

P
-------------- 

 – Hgf Tg Tf–( )=

1 ε+
2

------------ 
  hg

′ 1 ε–
2

----------- 
  hf

′+ Γw Qwg DISSg  .+ + +

∂
∂t
---- αfρfUf( ) 1

A
---- ∂

∂x
------ αfρfUfvfA( ) P ∂

∂x
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P∂αg

∂t
---------

hf
*

hg
* hf

*–
----------------

 
 
  Ps

P
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*
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* hf

*–
----------------

 
 
 
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P P– s

P
-------------- 
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1 ε+
2

------------ 
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----------- 
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an N x N system of equations must be solved simultaneously at each time step. N is the total number of
control volumes used to simulate the fluid system.

It is well known3.1-4,3.1-12 that the system of differential equations constitutes an ill-posed,
initial-value problem. This fact is of little concern physically, since the addition of any second-order
differential effect (regardless of how small), such as viscosity or surface tension, results in a well-posed

problem.3.1-13 However, the ill-posedness is of some concern numerically, since it is necessary that the
numerical problem be well-posed. The approximations inherent in any numerical scheme modify the
solution somewhat (truncation error); these effects can be either stabilizing or destabilizing. The resulting
numerical scheme must be stable for mesh sizes of practical interest.

A well-posed and stable numerical algorithm results from employing several stabilizing techniques.
These include the selective implicit evaluation of spatial gradient terms at the new time, donor
formulations for the mass and energy flux terms, and use of a donor-like formulation for the momentum
flux terms. Donor-like formulations for these flux terms are used because of the well-known instability of
an explicit centered finite difference scheme. The term donor-like is used because the momentum flux
formulation consists of a centered formulation for the spatial velocity gradient plus a numerical viscosity
term. These two terms are similar to the form obtained when the momentum flux terms are donored with
the unexpanded form of the momentum equations. The well-posedness of the final numerical scheme, as
well as its accuracy, has been demonstrated for practical cell sizes by extensive numerical testing (see
Volume VI).

The difference equations are based on the concept of a control volume (or mesh cell) in which mass
and energy are conserved by equating accumulation to the rate of mass and energy in through the cell
boundaries minus the rate of mass and energy out through the cell boundaries plus the source terms. This
model results in defining mass and energy volume average properties and requiring knowledge of
velocities at the volume boundaries. The velocities at boundaries are most conveniently defined through
use of momentum control volumes (cells) centered on the mass and energy cell boundaries. This approach
results in a numerical scheme having a staggered spatial mesh. The scalar properties (pressure, specific
internal energies, and void fraction) of the flow are defined at cell centers, and vector quantities (velocities)

are defined on the cell boundaries. The resulting one-dimensional spatial noding is illustrated in Figure
3.1-3. The term cell means an increment in the spatial variable, x, corresponding to the mass and energy
control volume. 

The difference equations for each cell are obtained by integrating the mass and energy equations
[Equations (3.1-69), (3.1-71), (3.1-72), (3.1-76), and (3.1-78)] with respect to the spatial variable, x, from
the junction at xj to xj+1. The momentum equations [Equations (3.1-73) and (3.1-74)] are integrated with

respect to the spatial variable from cell center to adjoining cell center (xK to xL, Figure 3.1-3). The

equations are listed for the case of a pipe with no branching and only one wall (heat structure) next to the
cell. The numerical technique for the difference equations requires the volume be equal to the volume flow
area times the length.
INEEL-EXT-98-00834-V1 3-28



ATHENA/2.3
When the mass and energy equations [Equations (3.1-69), (3.1-71), (3.1-72), (3.1-76), and (3.1-78)]
are integrated with respect to the spatial variable from junction j to j+1, differential equations in terms of
cell-average properties and cell boundary fluxes are obtained. The subscripts and superscripts indicate
integration limits for the enclosed quantity.

The sum density Equation (3.1-69) becomes

. (3.1-81)

The difference density Equation (3.1-71) becomes

(3.1-82)

The total noncondensable density Equation (3.1-72) becomes

Figure 3.1-3 Difference equation nodalization schematic.

Vector node 
or junction

vg, vf

j-1

K

Mass and energy control
volume or cell

vg

vf L

j+1

Scalar node

P, αg, Ug, Uf

Momentum control
volume or cell

j

CL

V αg
∂ρg

∂t
-------- αf

∂ρf

∂t
-------- ρg ρf–( )

∂αg

∂t
---------+ + αgρgvgA( )xj

xj 1+ αfρfvfA( )xj

xj 1++ + 0=

V αg
∂ρg
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. (3.1-83)

The vapor/gas energy Equation (3.1-76) becomes

(3.1-84)

The liquid energy Equation (3.1-78) becomes

(3.1-85)

As discussed in Section 3.1.1, the phasic energy dissipation terms, DISSg and DISSf, contain the

sums of the wall friction and pump effects. These dissipation terms should also contain both the code
calculated abrupt area change dissipation terms and the user-supplied loss coefficient dissipation terms.
However these terms were removed in RELAP5/MOD2 because of temperature problems (i.e.,
overheating). Thus, they are not present in the default ATHENA code. They can be activated by the user in
the input deck, however the user is cautioned that temperature problems may occur.

The sum and difference momentum equations [Equations (3.1-73) and (3.1-74)] are integrated from
cell center to cell center to obtain

(3.1-86)

V ρgXn
∂αg

∂t
--------- αgXn

∂ρg

∂t
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∂Xn

∂t
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and

(3.1-87)

Here, the common area term, A, has been factored from most terms. The quantities shown in brackets
with limits are evaluated at the indicated limits, while the coefficients are averaged over the cell or
integration interval. The indicated derivatives are now derivatives of cell average quantities. Since the
integration interval is centered on the junction, the coefficient averages are approximated by the junction
values. In all cases, the correlation coefficients for averaged products are taken as unity, so averaged
products are replaced directly with products of averages. The HLOSSG and HLOSSF terms contain both
code calculated abrupt area change loss terms and user-specified loss terms. This is discussed further in
this section when the full finite difference momentum equations are discussed.

Several general guidelines were followed in developing numerical approximations for Equations
(3.1-81) through (3.1-87). These guidelines are summarized below.

• Mass and energy inventories are very important quantities in water reactor safety analysis.
The numerical scheme should be consistent and conservative in these quantities. [A
greater degree of approximation for momentum effects is considered acceptable,
especially since nuclear reactor flows are dominated by large sources and sinks of
momentum (i.e., pump, abrupt area change)]. Both mass and energy are convected from
the same cell, and each is evaluated at the same time level; that is, mass density is
evaluated at old time level, so energy density is also evaluated at old time.

• To achieve fast execution speed, implicit evaluation is used only for those terms
responsible for the sonic wave propagation time step limit and those phenomena known to
have small time constants. Thus, implicit evaluation is used for the velocity in the mass
and energy transport terms, the pressure gradient in the momentum equations, and the
interface mass and momentum exchange terms.

• To further increase computing speed, time-level evaluations are selected so the resulting
implicit terms are linear in the new time variables. Where it is necessary to retain
nonlinearities, Taylor series expansions about old time values are used to obtain a

V
A
---- 

  1 Cρm
2

ρgρf
----------+ 

  ∂vg

∂t
--------

∂vf

∂t
-------– 

  1
2
--- vg

2( )xK

xL 1
2
--- vf

2( )xK

xL
–+

 1
ρg
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ρf
----– 

  P( )xK

xL  –  FWGvg FWFvf–( ) xL xK–( )–=

Γg
ρmvI αfρfvg αgρgvf+( )–

αgρgαfρf
------------------------------------------------------------- xL xK–( ) HLOSSG vg– HLOSSF vg+ +

 ρmFI vg vf–( ) xL xK–( )–

ρm

ρgρf
---------- 

  ρf ρg–( )By yL yK–( )  .+
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formulation linear in the new time variables. (Higher-order terms are neglected.) Linearity
results in high computing speed by eliminating the need to iteratively solve systems of
nonlinear equations.

• To allow easy degeneration to homogeneous, or single-phase, formulations, the
momentum equations are used as a sum and a difference equation. The particular
difference equation used is obtained by first dividing each of the phasic momentum

equations by αgρg and αfρf, for the vapor/gas and liquid phase equations, respectively,

and then subtracting.

Using the above guidelines, the finite difference equations for the mass and energy balances,
corresponding to Equations (3.1-81) through (3.1-85), are listed below. Some of the terms are intermediate
time variables, which are written with a tilde (~). The reason for their use is explained in Section 3.1.4.

The sum continuity equation is

(3.1-88)

The difference continuity equation is

(3.1-89)

The total noncondensable continuity equation is

(3.1-90)

The vapor/gas thermal energy equation is
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(3.1-91)

The liquid thermal energy equation is

(3.1-92)

 The quantities having a dot overscore are donored quantities based on the junction velocities, vg,j

and vf,j. The donored quantities are volume average scalar quantities defined analytically as

(3.1-93)

where  is any of the donored properties, and vj is the appropriate velocity (that is, vapor/gas or liquid).

This equation holds for the case . For the case vj = 0 and PK > PL,

. (3.1-94)

For the case vj = 0 and PK < PL,
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. (3.1-95)

For the degenerate case vj = 0 and PK = PL, a density-weighted average formulation is used,

(3.1-96)

for all donored properties except for densities (which use a simple average). In this equation, ρK and ρL are

the appropriate densities (e.g., vapor/gas or liquid). Where donored values are not used at junctions, linear

interpolations between neighboring cell values are used. It is not required that  and  sum to 1; this

can occur in counter-current flow.

The provisional advanced time phasic densities used in Equations (3.1-88) through (3.1-92) are
obtained by linearizing the phasic density state relations about the old time values (see Section 3.2), these
are

(3.1−97)

. (3.1-98)

The method of obtaining the phasic density state derivatives used in Equations (3.1-97) and (3.1-98)
is also indicated in Section 3.2.

The provisional advanced time phasic interface heat transfer rates can be written using the finite

difference form of Equations (3.1-48) and (3.1-26) after evaluating the extrapolated temperature ;

these are

(3.1-99)

. (3.1-100)

The provisional advanced time temperatures are obtained by linearizing the temperature state
relations about the old time values (see Section 3.2); these are

φ
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  ∂ρg

∂Xn
--------- 

 
L

n
X̃n L,

n 1+
Xn L,

n– 
  ∂ρg

∂Ug
--------- 

 
L

n
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INEEL-EXT-98-00834-V1 3-34



ATHENA/2.3
(3.1-101)

(3.1-102)

. (3.1-103)

The method used in Equations (3.1-101) through (3.1-103) to obtain the temperature state derivatives
is also indicated in Section 3.2.

The previously stated guidelines are also used to obtain the finite-difference equations for the phasic
momentum equations. In this case, volume-average properties for the momentum control volume are taken
as junction properties (that is, linear interpolations between mass and energy control volume centers). The
momentum flux terms are approximated using a donor-like formulation that results in a centered velocity
gradient term and a viscous-like term (numerical viscosity, artificial viscosity). The finite difference
equations for the sum and difference momentum equations, Equations (3.1-86) and (3.1-87), are

(3.1-104)

and
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 
L

n
PL

n 1+ PL
n–( )

∂Tg

∂Xn
--------- 

 
L

n
X̃n L,

n 1+
Xn L,

n–( )
∂Tg

∂Ug
--------- 

 
L

n
Ũg L,

n 1+
Ug L,

n–( )+ + +=

T̃f L,
n 1+

Tf L,
n ∂Tf

∂P
-------- 

 
L

n
PL

n 1+ PL
n–( )

∂Tf

∂Uf
--------- 

 
L

n
Ũf L,

n 1+
Uf L,

n–( )+ +=

αgρg( )j
n vg

n 1+ vg
n–( )j∆xj αfρf( )j

n vf
n 1+ vf

n–( )j∆xj+

1
2
--- α· gρ· g( )j

n vg
2( )L

n vg
2( )K

n
–[ ]∆t 1

2
--- α· fρ· f( )j

n vf
2( )L

n vf
2( )K

n
–[ ]∆t+ +

 1
2
--- α· gρ· g( )j

nVISGj
n α· fρ· f( )j

nVISFj
n+[ ]∆t–

PL PK–( )n 1+ ∆t– ρm( )j
n[ Bx αgρg( )j

nFWGj
n vg( )j

n 1+–+=

αfρf( )j
nFWFj

n vf( )j
n 1+– Γg( )j

n vg vf–( )j
n 1+ ]∆xj∆t–

 α· gρ· g( )j
nHLOSSGj

nvg j,
n 1+ α· fρ· f( )j

nHLOSSFj
nvf j,

n 1++[ ]∆t–
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(3.1-105)

where the viscous-like terms (numerical viscosity, artificial viscosity) are defined as

(3.1-106)

and

. (3.1-107)

The viscous-like terms vanish for steady, incompressible, one-dimensional flow. The coding for the finite
difference form of the difference momentum equation is programmed as the difference of the liquid and
vapor/gas momentum equations instead of the difference of the vapor/gas and liquid momentum equations
as is shown in Equation (3.1-105).

In momentum Equations (3.1-104) and (3.1-105), the scalar or thermodynamic variables needed at
the junctions are either linear interpolations between the neighboring cell values or donored quantities.

Terms that are shown multiplied by ∆xj are interpolated between neighboring cell values based on the

length of each half cell. The volume-centered velocities are defined in terms of the velocities in the
junctions attached to the volume (see Section 3.1.6). The HLOSSGj and HLOSSFj terms contain both

code-calculated abrupt area change loss terms (Section 3.4.3) and user-specified loss terms (Section 3.4.4).

These terms are given by

1 Cρm
2

ρgρf
----------+ 

 
j

n

vg
n 1+ vg

n–( ) vf
n 1+ vf

n–( )–[ ]j xj∆

1
2
---+ α· gρ· g

αgρg
----------- 

 
j

n
vg

2( )L
n vg

2( )K
n

–[ ] t 1
2
--- α· gρ· g

αgρg
----------- 

 
j

n
VISGj

n t∆–∆

 1
2
---

α· fρ· f

αfρf
---------- 

 
j

n
vf

2( )L
n vf

2( )K
n

–[ ] t 1
2
---

α· fρ· f

αfρf
---------- 

 
j

n
VISFj

n t∆+∆–  ρf ρg–
ρfρg

---------------- 
 

j

n
PL PK–( )n 1+ t∆–=

 FWGj
n vg( )j

n 1+ FWFj
n vf( )j

n 1+–
Γg

n ρm
n vI

n 1+ αf
nρf

nvg
n 1+– αg

nρg
nvf

n 1+–( )

αgρgαfρf( )n
---------------------------------------------------------------------------------------

j

–




–

ρmFI( )+ j
n vg

n 1+ vf
n 1+–( )j } xj t∆∆ α· gρ· g

αgρg
----------- 

 
j

n
H LOSSGj

nvg j,
n 1+–

 α· fρ· f

αfρf
---------- 

 
j

n
HLOSSFj

nvf j,
n 1+ ] t∆–

ρm

ρgρf
---------- 

 
j

n
ρf ρg–( )j

nBy yL
n yK

n–( ) t∆+

VISGj
n 1

2
--- vg L,

n vg
n( )j 1+

Aj 1+

Aj
----------- vg

n( )j– vg K,
n vg

n( )j vg
n( )j 1–

Aj 1–

Aj
-----------––

 
 
 

=

VISFj
n 1

2
--- vf L,

n vf
n( )j 1+

Aj 1+

Aj
----------- vf

n( )j– vf K,
n vf

n( )j vf
n( )j 1–

Aj 1–

Aj
-----------––

 
 
 

=
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(3.1-108)

and

. (3.1-109)

The code-calculated abrupt area change loss coefficients are  and , where  is the vapor/gas loss

coefficient and  is the liquid loss coefficient. The user-specified loss coefficient is , where  is

either the forward (KF) or reverse (KR) inputted user-specified loss coefficient, depending on the phasic

velocity direction.

Using the same averaging techniques, the unexpanded form of the mass and energy equations
[Equations (3.1-2), (3.1-3), (3.1-39), (3.1-41), (3.1-79), and (3.1-80)] are next presented in their final finite
difference form.

The unexpanded vapor/gas density Equation (3.1-2) becomes

. (3.1-110)

The provisional advancement time variable, , is obtained using the finite difference form of

Equation (3.1-50) and is written

. (3.1−111)

The unexpanded liquid density Equation (3.1-3) becomes

. (3.1-112)

The unexpanded total noncondensable density Equation (3.1-39) becomes

(3.1-113)

HLOSSGj
n 1

2
--- K( g

n Kin ) vg j,
n+=

HLOSSFj
n 1

2
--- K( f

n Kin ) vf j,
n+=

Kg
n Kf

n Kg
n

Kf
n Kin Kin

VL αgρg( )L
n 1+ αgρg( )L

n–[ ] α· g j 1+,
n ρ· g j 1+,

n vg j 1+,
n 1+ Aj 1+ α· g j,

n ρ· g j,
n vg j,

n 1+ Aj–( )∆t+ Γ̃g L,
n 1+ VL∆t=

Γ̃g L,
n 1+

Γ̃g L,
n 1+

Ps L,
n

PL
n

---------Hig L,
n T̃L

s n 1+,
 T̃g L,

n 1+
–( ) Hif L,

n T̃L
s n 1+,

T̃f L,
n 1+

–( )+

hg L,
*,n hf L,

*,n –
-------------------------------------------------------------------------------------------------------------------– Γw L,

n+=

VL αfρf( )L
n 1+ αfρf( )L

n–[ ] α· f j 1+,
n ρ· f j 1+,

n vf j 1+,
n 1+ Aj 1+ α· f j,

n ρ· f j,
n vf j,

n 1+ Aj–( )∆t+ Γ̃g L,
n 1+ VL∆t–=

VL αgρgXn( )L
n 1+ αgρgXn( )L

n–[ ] α· g j 1+,
n ρ· g j 1+,

n X· n j 1+,
n vg j 1+,

n 1+ Aj 1+ α· g j,
n ρ· g j,

n X· n j,
n vg j,

n 1+ Aj–( )∆t+

0  .=
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The unexpanded density equation for the i-th noncondensable species, Equation (3.1-41), becomes

(3.1-114)

The unexpanded vapor/gas thermal energy Equation (3.1-79) becomes

(3.1-115)

The variables , , , and  are written with a tilde (~) to indicate they are

provisional advancement time variables. The unexpanded liquid thermal energy Equation (3.1-80)
becomes

(3.1-116)

3.1.4  Time Advancement for the Semi-Implicit Scheme

The solution scheme will be discussed with regard to the state of the fluid in a control volume for two
successive time steps. There are four possible cases:

1. Two-phase to two-phase, where two-phase conditions exist at both old time (n) and new
time (n+1).

VL αgρgXnXni( )L
n 1+ αgρgXnXni( )L

n–[ ] α· g j 1+,
n ρ· g j 1+,

n X· n j 1+,
n

X· ni j 1+,
n

vg j 1+,
n 1+ Aj 1++

α· g j,
n ρ· g j,

n X· n j,
n

X· ni j,
n

vg j,
n 1+ Aj )∆t– 0 .=

VL αgρgUg( )L
n 1+ αgρgUg( )L

n–[ ] α·[ g j 1+,
n ρ· g j 1+,

n U· g j 1+,
n

PL
n+( )vg j 1+,

n 1+ Aj 1++

 α· g j,
n ρ· g j,

n U· g j,
n

PL
n+( )vg j,

n 1+ Aj ]∆t– VLPL
n α̃g L,

n 1+ αg L,
n–( )–=

 hf
*

hg
* hf

*–
----------------

 
 
 

–




L

n
Ps L,

n

PL
n

---------Hig L,
n T̃L

s n 1+,
T̃g L,

n 1+
–( )

hg
*

hg
* hf

*–
----------------

 
 
 

L

n

Hif L,
n T̃L

s n 1+,
T̃f L,

n 1+
–( )–+

PL
n Ps L,

n–

PL
n

---------------------
 
 
 

Hgf L,
n T̃g L,

n 1+
T̃f L,

n 1+
–( )– 1 ε+

2
------------ 

  hg L,
′ n, 1 ε–

2
----------- 

  hf L,
′ n,+ Γw L,

n Qwg L,
n DISSg L,

n }VL∆t .+ + +

α̃g L,
n 1+ T̃L

s n 1+,
T̃g L,

n 1+
T̃f L,

n 1+

VL αfρfUf( )L
n 1+ αfρfUf( )L

n–[ ] α·[ f j 1+,
n ρ· f j 1+,

n U· f j 1+,
n

PL
n+( )vf j 1+,

n 1+ Aj 1++

 α· f j,
n ρ· f j,

n U· f j,
n

PL
n+( )vf j,

n 1+ Aj ]∆t– VLPL
n α̃g L,

n 1+ αg L,
n–( )=

{+
hf

*

hg
* hf

*–
----------------

 
 
 

L

n
Ps L,

n

PL
n

---------Hig L,
n T̃L

s n 1+,
T̃g L,

n 1+
–( )

hg
*

hg
* hf

*–
----------------

 
 
 

L

n

Hif L,
n T̃L

s n 1+,
T̃f L,

n 1+
–( )+

PL
n P– s L,

n

PL
n

---------------------
 
 
 

Hgf L,
n T̃g L,

n 1+
T̃f L,

n 1+
–( ) 1 ε+

2
------------ 

  hg L,
′ n, 1 ε–

2
----------- 

  hf L,
′ n,+ Γw L,

n– Qwf L,
n DISSf L,

n }VL∆t .+ + +
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2. One-phase to one-phase, where one-phase conditions (either pure vapor/gas or pure
liquid) exist at both old time (n) and new time (n+1).

3. Two-phase to one-phase (disappearance), where two-phase conditions exist at old time
(n), and one-phase conditions exist at new time (n+1).

4. One-phase to two-phase (appearance), where one-phase conditions exist at old time (n),
and two-phase conditions exist at new time (n+1).

The solution scheme will first be presented for the two-phase to two-phase case, because it is the
most general. The solution scheme for the other three cases will then be presented.

3.1.4.1  Two-Phase To Two-Phase. First, the density and temperature Equations (3.1-97),
(3.1-98), (3.1-101), (3.1-102) and (3.1-103) are substituted into the five expanded density and energy
difference Equations (3.1-88) through (3.1-92). The equations are then ordered so that the noncondensable
density equation is first, the vapor/gas energy equation is second, the liquid energy equation is third, the
difference density equation is fourth, and the sum density equation is fifth. The five unknowns are
expressed as differences, and the order is

. (3.1-117)

The tilde (~) is used for Xn, Ug, Uf, and αg to indicate that these are provisional new time variables

and do not represent the final new time variables for the two-phase to two-phase case. The ordering of the
variables and equations was selected so that a given equation is dominated by its corresponding variable
(e.g., the vapor/gas energy equation is second and the vapor/gas specific internal energy variable Ug is also

second). The noncondensable equation is placed first for ease of degeneration when a noncondensable
component is not specified in the problem, and the pressure variable is placed last for numerical
convenience in the pressure solution. The five equations are then each divided by the volume VL. The

system of equations has the following form, where the matrix  and the vectors  contain

only old time level variables (the subscript L and the superscript n has been dropped for the listing of the
matrix and vectors):

(3.1-118)

where

X̃n L,
n 1+

Xn L,
n–( ) Ũg L,

n 1+
Ug L,

n–( ) Ũf L,
n 1+

Uf L,
n–( ) α̃g L,

n 1+ αg L,
n–( ) and PL

n 1+ PL
n–( ), , , ,

A
˜

b
˜

g
˜

1 g
˜

2 f
˜

1 f
˜

2, , , ,

A
˜

x
˜

b
˜

g
˜

1vg j 1+,
n 1+ g

˜

2vg j,
n 1+ f

˜
1vf j 1+,

n 1+ f
˜

2vf j,
n 1++ + + +=
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= (3.1-119)

= (3.1-120)

A11 = (3.1-121)

A12 = (3.1-122)

A14 = ρgXn (3.1-123)

A15 = (3.1-124)

A21 = (3.1-125)

A22 = (3.1-126)

A
˜

A11 A12 0 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

x
˜

X̃n L,
n 1+

Xn L,
n–

Ũg L,
n 1+

Ug L,
n–

Ũf L,
n 1+

Uf L,
n–

α̃g L,
n 1+ αg L,

n–

PL
n 1+ PL

n–

=

b
˜

0
b2

b3

b4

0

g
˜

1

g1
1

g2
1

0

g4
1

g5
1

= g
˜

2

g1
2

g2
2

0

g4
2

g5
2

= f
˜

1

0
0

f3
1

f4
1

f5
1

= f
˜

2

0
0

f3
2

f4
2

f5
2

=

αg Xn Xn∂
∂ρg ρg+ 

 

αgXn Ug∂
∂ρg

αgXn P∂
∂ρg

αgUg Xn∂
∂ρg hf

*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Xn∂

∂Ts

Xn∂
∂Tg– 

 +

hg
*

hg
* hf

*–
----------------

 
 
 

+ ∆tHif Xn∂
∂Ts

∆t P P– s

P
-------------- 

  Hgf Xn∂
∂Tg+

αg Ug Ug∂
∂ρg ρg+ 

  hf
*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Ug∂

∂Ts

Ug∂
∂Tg– 

 +

+
hg

*

hg
* hf

*–
----------------

 
 
 

∆tHif Ug∂
∂Ts

∆t P P– s

P
-------------- 

  Hgf Ug∂
∂Tg+
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A23 = (3.1-127)

A24 = ρgUg + P (3.1-128)

A25 = (3.1-129)

A31 = (3.1-130)

A32 = (3.1-131)

A33 = (3.1-132)

A34 = - ρfUf - P (3.1-133)

A35 = (3.1-134)

A41 = (3.1-135)

 hg
*

hg
* hf

*–
----------------

 
 
 

– ∆tHif Uf∂
∂Tf ∆t P P– s

P
-------------- 

  Hgf Uf∂
∂Tf–

αgUg P∂
∂ρg hf

*

hg
* hf

*–
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 
 
 

∆tPs

P
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∂Ts
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∂Tg– 

 +

hg
*

hg
* hf

*–
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 
 
 

∆tHif P∂
∂Ts

P∂
∂Tf– 

  ∆t P P– s

P
-------------- 

  Hgf P∂
∂Tg

P∂
∂Tf– 

 + +

hf
*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Xn∂

∂Ts

Xn∂
∂Tg– 

 –
hg

*

hg
* hf

*–
----------------

 
 
 

∆tHif
∂Ts

∂Xn
---------–

 ∆t P P– s

P
-------------- 

  Hgf
∂Tg

∂Xn
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 hf
*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Ug∂

∂Ts

Ug∂
∂Tg– 

    hg
*

hg
* hf

*–
----------------

 
 
 

∆tHif Ug∂
∂Ts

––

 ∆t P P– s

P
-------------- 

  Hgf Ug∂
∂Tg–

αf Uf Uf∂
∂ρf ρf+ 

  hg
*

hg
* hf

*–
----------------

 
 
 

∆tHif Uf∂
∂Tf ∆t P P– s

P
-------------- 

  Hgf Uf∂
∂Tf+ +

αfUf P∂
∂ρf hf

*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig P∂

∂Ts

P∂
∂Tg– 

 –

 hg
*

hg
* hf

*–
----------------

 
 
 

– ∆tHif P∂
∂Ts

P∂
∂Tf– 

  ∆t P P– s

P
-------------- 

  Hgf P∂
∂Tg

P∂
∂Tf– 

 –

αg Xn∂
∂ρg 2

hg
* hf

*–
---------------- 

  ∆tPs

P
-----Hig Xn∂

∂Ts

Xn∂
∂Tg– 

  2
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* hf
*–

---------------- 
  ∆tHif Xn∂
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A42 = (3.1-136)

A43 = (3.1-137)

A44 = ρg + ρf (3.1-138)

A45 = (3.1-139)

A51 = (3.1-140)

A52 = (3.1-141)

A53 = (3.1-142)

A54 = (3.1-143)

A55 = (3.1-144)

b2 = (3.1-145)

αg Ug∂
∂ρg 2

hg
* hf

*–
---------------- 

  ∆tPs

P
-----Hig Ug∂

∂Ts

Ug∂
∂Tg– 

 + 2
hg

* hf
*–

---------------- 
  ∆tHif Ug∂

∂Ts
+

αf Uf∂
∂ρf– 2

hg
* hf

*–
---------------- 

  ∆tHif Uf∂
∂Tf–

αg P∂
∂ρg  αf–

P∂
∂ρf 2

hg
* hf

*–
---------------- 

  ∆tPs

P
-----Hig P∂

∂Ts

P∂
∂Tg– 

 +

2
hg

* hf
*–

---------------- 
  ∆tHif P∂

∂Ts

P∂
∂Tf– 

 +

αg Xn∂
∂ρg

αg Ug∂
∂ρg

αf Uf∂
∂ρf

ρg ρf–

αg P∂
∂ρg αf P∂

∂ρf+

hf
*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Ts Tg–( )–

hg
*

hg
* hf

*–
----------------

 
 
 

∆tHif Ts Tf–( )–

– ∆t P P– s

P
-------------- 

  Hgf Tg Tf–( ) ∆tΓw
1 ε–

2
----------- 

  hf
′ 1 ε+

2
------------ 

  hg
′+ Qwg∆t+ +

D+ ISSg∆t
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b3 = (3.1-146)

b4 = (3.1-147)

= (3.1-148)

= (3.1-149)

= (3.1-150)

= (3.1-151)

= (3.1-152)

= (3.1-153)

= (3.1-154)

= (3.1-155)

= (3.1-156)

= (3.1-157)

hf
*

hg
* hf

*–
----------------

 
 
 

∆tPs

P
-----Hig Ts Tg–( )

hg
*

hg
* hf

*–
----------------

 
 
 

∆tHif Ts Tf–( )+

∆+ t P P– s

P
-------------- 

  Hgf Tg Tf–( ) ∆tΓw
1 ε–

2
----------- 

  hf
′ 1 ε+

2
------------ 

  hg
′+– Qwf∆t+

DISSf∆t+

2
hg

* hf
*–

---------------- 
  ∆tPs

P
-----Hig Ts Tg–( )– 2

hg
* hf

*–
---------------- 

  ∆tHif Ts Tf–( ) 2+ Γw∆t–

g1
1  αg

· ρ· gX· nA( )j 1+
∆t
V
-----–

g2
1  α· g j 1+, ρ· g j 1+, U· g j 1+, PL+( )Aj 1+[ ]∆t

V
-----–

g4
1  α· gρ· gA( )j 1+

∆t
V
-----–

g5
1  α· gρ· gA( )j 1+

∆t
V
-----–

g1
2 α· gρ· gX· nA( )j

∆t
V
-----

g2
2 α· g j, ρ· g j, U· g j, PL+( )Aj[ ]∆t

V
-----

g4
2 α· gρ· gA( )j

∆t
V
-----

g5
2 α· gρ· gA( )j

∆t
V
-----

f3
1  α· f j 1+, ρ· f j 1+, U· f j 1+, PL+( )Aj 1+[ ]– ∆t

V
-----

f4
1 α· fρ· fA( )j 1+

∆t
V
-----
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= (3.1-158)

= (3.1-159)

= (3.1-160)

= . (3.1-161)

A solvera,3.1-14 is used to obtain the bottom row of . The solver uses LU factorization without

pivoting and factors the matrix into upper and lower triangular matrices (LU factors) using triangular
decomposition.

Multiplying Equation (3.1-118) by , one can verify that just the bottom row of  is needed to

obtain an equation that involves only the unknown variables , , , , and

. Substituting the velocity equations [after solving momentum Equations (3.1-104) and (3.1-105) for

 and ] into this equation results in a single equation involving pressures. This is done for each

volume, giving rise to an N x N system of linear equations for the new time pressures in a system

containing N volumes. Next, the default border-profile LU solver3.1-10 is used to obtain  for

each volume. Then, the pressure differences  are substituted into the velocity equations to

obtain the new time velocities.

Now, the new time velocities are substituted back into Equation (3.1-118) to obtain a single vector on

the right side. The LU factors are used to obtain the provisional time variables , , , and

.

A mixture density, , is then calculated from the unexpanded form of the mixture continuity

equation which is numerically mass preserving. The mixture density  is calculated by adding the

phasic density Equations, (3.1-2) and (3.1-3), to give the mixture continuity equation, which is

a. Personal communication, E. S. Marwill to J. A. Trapp, January 1983.

f5
1  α· fρ· fA( )j 1+– ∆t

V
-----

f3
2 α· f j, ρ· f j, U· f j, PL+( )Aj[ ]∆t

V
-----

f4
2  α· fρ· fA( )j– ∆t

V
-----

f5
2 α· fρ· fA( )j

∆t
V
-----

A
˜

1–

A
˜

1– A
˜

1–

PL
n 1+ PL

n–( ) vg j 1+,
n 1+ vg j,

n 1+ vf j 1+,
n 1+

vf j,
n 1+

vg j,
n 1+ vf j,

n 1+

PL
n 1+ PL

n–( )

PL
n 1+ PL

n–( )

X̃n L,
n 1+

Ũg L,
n 1+

Ũf L,
n 1+

α̃g L,
n 1+

ρm L,
n 1+

ρm L,
n 1+
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. (3.1-162)

The mass-preserving finite difference approximation is

(3.1-163)

from which  is obtained. The density  is compared with the mixture density, , which is

calculated from the state relations. The difference between these two mixture densities is used to provide a
time step control based on truncation in the calculation of the mixture density (see Section 8.1).

Next,  is calculated using Equation (3.1-111), where , , and  are obtained

from Equations (3.1-101) through (3.1-103) using the newly calculated variables , , , and

.

To obtain the new time variables , , , , and , the unexpanded difference

equations, Equations (3.1-110), (3.1-112), (3.1-113), (3.1-114), (3.1-115), and (3.1-116) are used. In the
discussion introducing the unexpanded difference equations, motives were given for use of the
unexpanded form. Extensive numerical testing has shown the benefits of the following procedures.

Using the phasic convective terms along with  from Equation (3.1-111), the unexpanded phasic

density Equations (3.1-110) and (3.1-112) are used to obtain  and .

Next, the unexpanded total noncondensable density Equation (3.1-113) is used to calculate

, which is then divided by  to obtain .

The unexpanded individual noncondensable density Equation (3.1-114) is then used to calculate

, which is divided by  to obtain .

Following this, the unexpanded vapor/gas energy Equation (3.1-115) is used with the vapor/gas
energy source and convective terms from the expanded equation as well as the provisional time variables

, , and  to obtain , which is divided by  to give .

Analogously, the unexpanded liquid energy Equation (3.1-116) is used to obtain , which is

divided by  to give .

∂ρm

∂t
--------- 1

A
----

x∂
∂ αgρgvgA αfρfvfA+( )+ 0=

VL ρm L,
n 1+ ρL

n–( ) α· g j 1+,
n ρ· g j 1+,

n vg j 1+,
n 1+ Aj 1+ α· g j,

n ρ· g j,
n vg j,

n 1+ Aj–( )∆t+

α· f j 1+,
n ρ· f j 1+,

n vf j 1+,
n 1+ Aj 1+ α· f j,

n ρ· f j,
n vf j,

n 1+ Aj–( )+ ∆t 0=

ρm L,
n 1+ ρm L,

n 1+ ρL
n 1+

Γ̃g L,
n 1+ T̃L

s n 1+,
T̃g L,

n 1+
T̃f L,

n 1+

PL
n 1+ Ũg L,

n 1+
Ũf L,

n 1+

X̃n L,
n 1+

Xn L,
n 1+ Xni L,

n 1+ Ug L,
n 1+ Uf L,

n 1+ αg L,
n 1+

Γ̃g L,
n 1+

αgρg( )L
n 1+ αfρf( )L

n 1+

αgρgXn( )L
n 1+ αgρg( )L

n 1+ Xn L,
n 1+

αgρgXnXni( )L
n 1+ αgρgXn( )L

n 1+ Xni L,
n 1+

T̃
s n 1+,

T̃g
n 1+

T̃f
n 1+

αgρgUg( )L
n 1+ αgρg( )L

n 1+ Ug L,
n 1+

αfρfUf( )L
n 1+

αfρf( )L
n 1+ Uf L,

n 1+
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Finally,  is calculated from  using the equation 

(3.1-164)

where  is obtained using a linearized state relation Equation (3.1-98) and the new time variables 

and . The equation for  has the form

. (3.1-165)

The unexpanded equations are used in all two-phase to two-phase cases, except when the provisional

void fraction  is less than 0.001 and . For this case, the provisional new time variables

are taken to be the new time variables.

3.1.4.2  One-Phase to One-Phase. For this case, the pressure calculation remains the same as in
the two-phase to two-phase case. For the densities and energies, however, the unexpanded equations are
not used, and the provisional new time variables obtained from the expanded equations are taken to be the
new time variables. For the phase that is not present, the interfacial heat transfer coefficient for that phase

is computed as if the void fraction was approximately 10-5 instead of zero. This results in the specific
internal energy of that phase being computed very close to saturation conditions. Slight numerical
variations from saturation occur due to linearization; and the phasic specific internal energy, temperature,
and density of the missing phase are reset to the saturation values in the state relations subroutine. This
ensures agreement with saturation conditions. For the phase that is present, a value of 0.0 for the interfacial
heat transfer coefficient is used, since there is no mass transfer occurring.

3.1.4.3  Two-Phase to One-Phase (Disappearance). For this case, the calculation is carried
out in the same way as in the two-phase to two-phase case, where expanded calculations followed by

unexpanded calculations are used (except for the case ). Then, for the phase

that disappears, the phasic specific internal energy, temperature, and density are reset to saturation values
in the state relations subroutine, as is done with the one-phase to one-phase case. Sometimes when a phase
disappears, the calculated void fraction and/or noncondensable quality is less than zero or greater than one.
When this occurs, the void fraction and/or noncondensable quality is then reset to zero or one, respectively.
If the calculated void fraction and/or noncondensable quality is too much less than zero or too much
greater than one (amount determined through extensive testing, which is consistent with the mass error
check), an error is assumed to have occurred, and the time step is reduced and repeated.

3.1.4.4  One-Phase to Two-Phase (Appearance). Here, the calculation proceeds in the same
way as in the one-phase to one-phase case. For the phase that is not present, the large interfacial heat

transfer coefficient for that phase is computed as if the void fraction was approximately 10-5 instead of

αg L,
n 1+ αfρf( )L

n 1+

αg L,
n 1+ 1 αf L,

n 1+– 1
αfρf( )L

n 1+

ρ̂f L,
n 1+

-----------------------–= =

ρ̂f L,
n 1+ PL

n 1+

Uf L,
n 1+ ρ̂f L,

n 1+

ρ̂f L,
n 1+ ρf L,

n ∂ρf

∂P
-------- 

 
L

n
PL

n 1+ PL
n–( )

∂ρf

∂Uf
--------- 

 
L

n
Uf L,

n 1+ Uf L,
n–( )+ +=

α̃g L,
n 1+ α̃g L,

n 1+ αg L,
n<

α̃g L,
n 1+ 0.001 and < α̃g L,

n 1+ αg L,
n<
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zero. This results in the specific internal energy and temperature of that phase being computed very close
to saturation conditions. Because the phase that is appearing is assumed to appear at saturation conditions,
an error can be made if, in reality, the phase appeared by convection from a neighboring volume that was at
a temperature different from saturation. The magnitude of the potential error is controlled by letting the
phase appear at saturation but restricting the amount that can appear by time step control. If more than the
limiting amount (amount determined through extensive testing) appears, an error is assumed to have
occurred, and the time step is reduced and repeated.

3.1.5  Difference Equations and Time Advancement for the Nearly-Implicit Scheme

For problems where the flow is expected to change very slowly with time, it is possible to obtain
adequate information from an approximate solution based on very large time steps. This would be
advantageous if a reliable and efficient means could be found for solving difference equations treating all
terms (i.e., phase exchanges, pressure propagation, and convection) by implicit differences. Unfortunately,
the state of the art is less satisfactory here than in the case of semi-implicit (convection-explicit) schemes.
For illustration, a fully implicit scheme for the six-equation model of a 100-volume problem would require
the solution of 600 coupled algebraic equations. If these equations were linearized for a pipe with no
branching, inversion of a block tri-diagonal, 600 x 600 matrix with 6 x 6 blocks would be required. This
would yield a matrix of bandwidth 23 containing ~13,800 nonzero elements, resulting in an extremely
costly time-advancement scheme. Note that the tri-diagonal shape is limited to a pipe with no branching
problem.

To reduce the number of calculations required for solving fully implicit difference schemes,
fractional step (sometimes called multiple step) methods have been tried. The equations can be split into
fractional steps based upon physical phenomena. This is the basic idea in the nearly-implicit scheme.

Fractional step methods for two-phase flow problems have been developed.3.1-15,3.1-16 These earlier
efforts have been used to guide the development of the present nearly-implicit scheme. The fractional step

method described here3.1-17 differs significantly from prior efforts in the reduced number of steps used to
evaluate the momentum equations.

The nearly-implicit scheme consists of two steps. The first step solves all seven conservation
equations, treating all interface exchange processes, the pressure propagation process, and the momentum
convection process implicitly. These finite difference equations are exactly the expanded ones [Equations
(3.1-88) through (3.1-92), (3.1-104), and (3.1-105)] solved in the semi-implicit scheme with one major
change. The convective terms in the momentum Equations (3.1-104) and (3.1-105) are evaluated implicitly
(in a linearized form) instead of in an explicit donored fashion as is done in the semi-implicit scheme. The
second step consists of solving the unexpanded form of the mass and energy equations. As is done for the
semi-implicit scheme, the equations are listed for the case of a pipe with no branching and only one wall
(heat structure) next to the wall.

3.1.5.1  First Step of the Nearly-Implicit Scheme. The linearized implicit technique used for
the convective terms in the momentum equations in the first step is illustrated for the convective term in
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the vapor/gas part of the sum momentum Equation (3.1-86). An analogous result occurs for the liquid part
as well as for the difference momentum Equation (3.1-87). The vapor/gas convective term is

. (3.1-166)

In the nearly-implicit scheme formulation, the VISF [Equation (3.1-107)] and VISG [Equation
(3.1-106)] terms that result from the donor-like formulation are not used because they are not needed for
stability purposes. Evaluating the velocities at new time gives the finite difference form of the vapor/gas
convective term as

. (3.1-167)

This term can be rewritten as

(3.1-168)

Assuming that the leading quadratic term for L and K is small (small temporal changes in velocity)
compared to the others results in the term

. (3.1-169)

Using this linearized implicit form, the convective (momentum flux) terms in the sum momentum
finite difference Equation (3.1-104) are replaced by

(3.1−170)

Similarly, for the difference momentum finite difference Equation (3.1-105), the convective
(momentum flux) terms are replaced by

1
2
---αgρg vg

2( )xK

xL

1
2
--- α· gρ· g( )j

n vg L,
n 1+( )

2 vg K,
n 1+( )

2
–[ ]

1
2
--- αg

· ρ· g( )j
n vg L,

n 1+ vg L,
n–( )

2
[ 2vg L,

n vg L,
n 1+ vg L,

n–( ) vg L,
n( )

2
+ +

vg K,
n 1+ vg K,

n–( )
2

– 2vg K,
n vg K,

n 1+ vg K,
n–( )– vg K,

n( )
2
] .–

1
2
--- α· gρ· g( )j

n 2vg L,
n vg L,

n 1+ vg L,
n–( ) vg L,

n( )
2 2vg K,

n vg K,
n 1+ vg K,

n–( )– vg K,
n( )

2
–+[ ]

1
2
--- α· gρ· g( )j

n 2vg L,
n vg L,

n 1+ vg L,
n–( ) vg L,

n( )
2 2vg K,

n vg K,
n 1+ vg K,

n–( )– vg K,
n( )

2
–+[ ]∆t

1
2
---+ α· fρ· f( )j

n 2vf L,
n vf L,

n 1+ vf L,
n–( ) vf L,

n( )
2 2vf K,

n vf K,
n 1+ vf K,

n–( )– vf K,
n( )

2
–+[ ]∆t .
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(3.1−171)

Just like the semi-implicit scheme, the coding for the finite difference form of the difference momentum
equation [Equation (3.1-105) with convective (momentum flux) terms from Equation (3.1-171)] is
programmed as the difference of the liquid and  vapor/gas momentum equations instead of the difference
of the vapor/gas and the liquid momentum equations [as shown in Equation (3.1-105)] in the
nearly-implicit scheme.

The volume-centered velocities are defined in terms of the velocities in the junctions attached to the
volume (see Section 3.1.6). Thus, the new time volume-averaged velocities have the form

(3.1-172)

and

(3.1-173)

where  and  contain all old time quantities, and the equations have the same form as those in

Section 3.1.6 except that the junction velocities are at new time values.

Although this additional implicitness involves only the momentum flux terms, it has a large impact
on the algebraic solution algorithm in the first step of the nearly-implicit scheme. In the semi-implicit
scheme, Equations (3.1-88) through (3.1-92) are solved locally to give a single equation of the form

(3.1-174)

for pressure, where A, B, C, D, and E contain only n time level variables (see Figure 3.1-3 for cell
indexes). In the semi-implicit scheme, the momentum equations [Equations (3.1-104) and (3.1-105)]  are
also solved locally to obtain

(3.1-175)

1
2
---

αg
· ρg

·

αgρg
----------- 

 
j

n

2vg L,
n vg L,

n 1+ vg L,
n–( ) vg L,

n( )
2 2vg K,

n vg K,
n 1+ vg K,

n–( )– vg K,
n( )

2
–+[ ]∆t

 1
2
---–

αf
· ρf

·

αfρf
---------- 

 
j

n

2vf L,
n vf L,

n 1+ vf L,
n–( ) vf L,

n( )
2 2vf K,

n vf K,
n 1+ vf K,

n–( )– vf K,
n( )

2
–+[ ]∆t .

vf L,
n 1+ cf j,

n vf j,
n 1+ cf j,

n vf j,
n 1+

j 1=

Jout

∑+
j 1=

Jin

∑=

vg L,
n 1+ cg j,

n vg j,
n 1+ cg j,

n vg j,
n 1+

j 1=

Jout

∑+
j 1=

Jin

∑=

cf j,
n cg j,

n

PL
n 1+ Avg j 1+,

n 1+ Bvg j,
n 1+ Cvf j 1+,

n 1+ Dvf j,
n 1+ E+ + + +=

vg j,
n 1+ A1 PL

n 1+ PK
n 1+–( ) C1+=
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(3.1-176)

where A1, B1, C1, and D1  contain only n time level variables. If the momentum Equations (3.1-175) and
(3.1-176) are used to eliminate the n+1 time level junction velocities from Equation (3.1-174), we get the
pressure equation used in the semi-implicit scheme to obtain all the n+1 time level pressures. For the
previous example of a 100 volume straight pipe with no branching problem, this results in a 100 x 100

tri-diagonal matrix system to solve for all the Pn+1.

In the nearly-implicit scheme, because the momentum flux terms are implicit [junction velocities are
at new time (n+1)], the momentum Equations (3.1-104) and (3.1-105) [using the convective terms from
Equations (3.1-170) and (3.1-171)] cannot be locally solved to get Equations (3.1-175) and (3.1-176). The
new time convective terms bring in the n+1 time level upstream and downstream junction velocities, e.g.,

, , , and .  The gravity head and the horizontal stratification force terms are also

implicit [volume void fractions are at new time (n+1)]. Thus, in the nearly implicit scheme, the momentum
equations are now of the form

(3.1-177)

(3.1-178)

where A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, P1, Q1, and R1 contain only n time level
variables.

Equations (3.1-88) through (3.1-92) are still used to obtain Equation (3.1-174). In the nearly-implicit
scheme, Equation (3.1-174) is used to eliminate the n+1 time level pressure terms from Equations
(3.1-177) and (3.1-178). An equation describing the void fraction in a volume in terms of the phasic
velocoties in the junctions attached to the volume [similar to Equation (3.1-177)] can be derived from the
solution of the phasic mass and energy equations. The equation for volume L is of the form

 (3.1-179)

where S, T, U, V, and W contain only n time level variables. In the nearly-implicit scheme, Equation
(3.1-179) and a similar equation for the void fraction in volume K are used to eliminate the n+1 time level
void fraction terms from Equations (3.1-177) and (3.1-178) to obtain a pair of coupled momentum
equations involving only n+1 time level junction velocities. Because of the n+1 time level momentum flux
terms, this is a globally coupled system. For a pipe with no branching of 100 junctions, a 200 x 200 matrix

vf j,
n 1+ B1 PL

n 1+ PK
n 1+–( ) D1+=

vg j 1–,
n 1+ vg j 1+,

n 1+ vf j 1–,
n 1+ vf j 1+,

n 1+

A1vg j 1–,
n 1+ B1vf j 1–,

n 1+ C1vg j,
n 1+ D1vf j,

n 1+ E1vg j 1+,
n 1+ F1vf j 1+,

n 1++ + + + + =

G1 PL
n 1+ PK

n 1+–( ) H1 αg L,
n 1+ αg K,

n 1+–( ) I1+ +

J1vg j 1–,
n 1+ K1vf j 1–,

n 1+ L1vg j,
n 1+ M1vf j,

n 1+ N1vg j 1+,
n 1+ O1vf j 1+,

n 1++ + + + + =

P1 PL
n 1+ PK

n 1+–( ) Q1 αg L,
n 1+ αg K,

n 1+–( ) R1+ +

αg L,
n 1+ Svg j 1+,

n 1+ Tvg j,
n 1+ Uvf j 1+,

n 1+ Vvf j,
n 1+ W+ + + +=
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system is obtained. By partitioning the matrix into 2 x 2 submatrices (or blocks), the matrix is in block
tri-diagonal form. This system is next preconditioned in order to enhance the diagonal dominance of the

matrix.3.1-18 This system of equations is then solved using the default border-profile LU matrix solution

algorithm.3.1-10 Once the  and  solution is obtained, Pn+1 is obtained by substitution into

Equation (3.1-174). Using Equations (3.1-88) through (3.1-92), provisional new time values for αg, Ug, Uf,

and Xn, denoted by , , , and , can also be obtained. The void fraction substitution

makes the nearly-implicit solution algorithm more implicit and leads to enhanced numerical stability.

3.1.5.2  Second Step of the Nearly-Implicit Scheme. The second step in the nearly-implicit
scheme is used to stabilize the convective terms in the mass and energy balance equations. This step uses
the final n+1 time level junction velocities from the first step along with the interface exchange terms
resulting from the provisional variables of the first step, i.e., the interface heat and mass exchanges for step

two are calculated using Pn+1, , , and  from step one. The phasic continuity and energy
equations in this second step have the convected variables evaluated at the n+1 time level, i.e. implicitly, as
compared to their explicit evaluation in the first step.

The vapor/gas density equation is

. (3.1-180)

The liquid density equation is

. (3.1-181)

In Equations (3.1-180) and (3.1-181), the interfacial mass exchange  is evaluated using the

provisional values from the first step and is written

(3.1-182)

where the provisional temperatures  are evaluated as functions of , , , and Pn+1 from

the linearized state relation [Equations (3.1-101), (3.1-102), and (3.1-103)].

The total noncondensable density equation is

vf
n 1+ vg

n 1+

α̃g
n 1+ Ũg

n 1+
Ũf

n 1+
X̃n

n 1+

Ũg
n 1+

Ũf
n 1+

X̃n
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VL αgρg( )L
n 1+ αgρg( )L

n–[ ] αρ·( )g j 1+,
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vg j 1+,
n 1+ Aj 1+ αρ·( )g j,

n 1+
vg j,

n 1+ Aj–[ ]∆t+ Γ̃g L,
n 1+ VL∆t=

VL αfρf( )L
n 1+ αfρf( )L

n–[ ] αρ·( )f j 1+,
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vf j 1+,
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(3.1-183)

The density equation for the i-th noncondensable species is

(3.1-184)

The vapor/gas thermal energy equation is given by

(3.1-185)

The liquid thermal energy equation is given by

(3.1-186)

The second step uses the mass and energy balance equations. If the structure of Equations (3.1-180),
(3.1-181), (3.1-183), (3.1-184), (3.1-185), and (3.1-186) is examined, it is seen that each equation involves
only one unknown variable:

• Vapor/gas density Equation (3.1-180)     .
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• Liquid density Equation (3.1-181)     .

• Total noncondensable density Equation (3.1-183)     .

• Individual noncondensable density Equation (3.1-184)     .

• Vapor/gas energy Equation (3.1-185)     .

• Liquid energy Equation (3.1-186)     .

This is because the new time velocities,  and , are known from step one, and provisional

n+1 values from step one are used in the exchange terms. Hence, each equation is uncoupled from the
others and can be solved independently. In addition, the equations involving the vapor/gas phase,
Equations (3.1-180), (3.1-183), (3.1-184), and (3.1-185), have the same structural form for the convective

terms, i.e., each equation convects with velocity . The coefficient matrix generated by Equation

(3.1-180) is inverted once, and then this inverse is used with different right sides to solve Equations
(3.1-183), (3.1-184), and (3.1-185). Hence, for the pipe without branching problem of 100 cells, only one

100 x 100 tri-diagonal system is inverted to obtain , (αgρgXn)n+1, , and

. In like manner, the liquid phase Equations (3.1-181) and (3.1-186) have the same structure

and require only one inversion to be carried out to solve both equation sets, giving  and

.

With the above new time variables known, we obtain , , , and  from

(3.1-187)

(3.1-188)

(3.1-189)

αρ( )f
n 1+

αgρgXn( )n 1+
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n 1+ Xni

n 1+ Ug
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n 1+

Xn
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αgρg( )n 1+
-------------------------------=

Xni
n 1+ αgρgXnXni( )n 1+

αgρgXn( )n 1+
---------------------------------------=
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n 1+ αgρgUg( )n 1+

αgρg( )n 1+
-------------------------------=
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. (3.1-190)

The void fraction, , is obtained from

(3.1-191)

where

= the overall mixture density

= the liquid density, which is calculated from the linearized state relation

[Equation (3.1-98)] using Pn+1 and 

= the vapor/gas density, which is calculated from the linearized state relationship

[Equation (3.1-97)] using Pn+1, , and .

Up to this point of this section on the nearly-implicit scheme, the difference equations have been
presented along with the time advancement for the case of two-phase to two-phase only. As indicated in
Section 3.1.4, there are three other possible transition cases (one-phase to one-phase, two-phase to
one-phase, and one-phase to two-phase). These three cases will now be described for the nearly-implicit
scheme.

For the one-phase to one-phase case, both the first step and the second step are carried out as in the
two-phase to two-phase case. For the phase that is not present, a large interfacial heat transfer coefficient
consistent with the interfacial heat transfer coefficients computed from the correlation for a void fraction of

10-5 is used. For the phase that is present, a value of 0.0 is used for the interfacial heat transfer coefficient.

For the phase that is not present, α is zero, and thus (αρ)n+1 equals zero for that phase. The provisional n+1
value of the corresponding variable is used in order to avoid the division by zero in Equations (3.1-187)
through (3.1-190). As with the semi-implicit time advancement, phasic specific internal energy,
temperature, and density of the missing phase are reset to the saturation values in the state relations
subroutine.

For the two-phase to one-phase case (disappearance), the calculation is carried out the same as in the
two-phase to two-phase case. Then, for the phase that is missing, the phasic specific internal energy,
temperature, and density of the missing phase are reset to saturation values in the state relations subroutine
as is done with the one-phase to one-phase case. Sometimes when a phase disappears, the calculated void

Uf
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----------------------------------------------------------------= =
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ρ̂f
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fraction and/or noncondensable quality is less than zero or greater than one. When this occurs, the void
fraction and/or noncondensable quality is then reset to zero or one, respectively. If the calculated void
fraction and/or noncondensable quality is too much less than zero or too much greater than one (amount
determined through extensive testing, which is consistent with the mass error check), an error is assumed
to have occurred, and the time step is reduced and repeated. This is the same approach used in the
semi-implicit scheme time advancement.

For the one-phase to two-phase case (appearance), the first step quantities are used for the appearing
phase. A large interfacial heat transfer coefficient, consistent with the interfacial heat transfer coefficients

from the correlations, as if the void fraction were 10-5, is used for the appearing phase, resulting in the
energy and temperature of that phase being very close to saturation. Because the phase that is appearing is
assumed to appear at saturation conditions, an error can be made if, in reality, the phase appeared by
convection from a neighboring volume that was at a temperature different from saturation. The magnitude
of the potential error is controlled by letting the phase appear at saturation but restricting the amount that
can appear by time step control. If more than the limiting amount appears, an error is assumed to have
occurred, and the time step is reduced and repeated. This is the same approach used in the semi-implicit
scheme time advancement.

In summary, the second step stabilizes the convective terms in the mass and energy equations, and it
does so with very little computational effort due to the fractional step nature of the scheme. As an example,
if the nearly-implicit method is compared with the fully implicit method for a pipe without branching
problem of 100 cells, we have the following efficiency estimates. The fully implicit method requires the
inversion of a banded block tri-diagonal 600 x 600 matrix of bandwidth 23 containing 13,800 nonzero
elements. The nearly-implicit method requires the inversion of one block tri-diagonal 200 x 200 matrix
with 2 x 2 blocks and bandwidth 7 containing 1,400 nonzero elements plus two 100 x 100 tri-diagonal
matrices with 300 nonzero elements. The nearly-implicit method thus requires about 1/10 the number of
storage locations required by the fully implicit method. If the computational efficiency is estimated by
counting the number of multiplications in the forward part of a Gaussian elimination algorithm, then the
fully implicit method for this problem requires about 450,000 multiplications, whereas the nearly-implicit
method requires about 2,000 multiplications. Thus, the nearly-implicit method requires about 1/200 (based
on the number of multiplications) of the computational time per time step needed for a fully implicit
scheme.

3.1.6  Volume-Average Velocities

The previous development of the difference equations considered a pipe consisting of a series of
singly connected volumes without branching. In ATHENA, each volume may have zero, one or more
junctions attached to its inlet end in the normal flow direction, and, zero, one, or more junctions attached to
its outlet end in the normal flow direction. The same can be true for the two crossflow directions (see
Section 3.4.5). Therefore, the flux terms at the inlet or outlet end of a volume for the normal or crossflow
directions consist of a summation over all of the junctions attached to that end of the volume.
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Volume-average velocities are required for the momentum flux calculation, evaluation of the wall
frictional forces, evaluation of the wall heat transfer, evaluation of the interfacial heat transfer, and the
Courant time step limit. In a simple constant area passage, the arithmetic average between the inlet and
outlet is a satisfactory approximation. At branch volumes, however, with multiple inlets and/or outlets or
for volumes with abrupt area change, use of the arithmetic average results in nonphysical behavior.

The liquid and vapor/gas velocities in the normal or crossflow directions in the volume cells are
calculated by a method that averages the phasic mass flows over the volume cell inlet and outlet junctions

in the normal or crossflow directions. A cell volume is shown in Figure 3.1-4, where the rectangular box
represents a cell volume. Each of the arrow vectors into or out of the box represents the liquid mass flow
through an inlet or outlet junction, respectively, in the normal or crossflow directions. The variable Jin is
the number of inlet junctions, and Jout is the number of outlet junctions. This discussion will be for liquid
velocity; the vapor/gas velocity derivation is the same. 

At the inlet side of the volume, the total mass flow rate into the volume is given by

(3.1-192)

where Mf,in is the mass flow rate of liquid into the volume.

The average inlet liquid volume fraction can be defined as

Figure 3.1-4 Schematic of a volume cell showing multiple inlet and outlet junction mass flows.
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. (3.1-193)

The average inlet liquid density can be defined as

. (3.1-194)

The average inlet liquid velocity with respect to the total inlet junction cross-sectional area can be
defined as

. (3.1-195)

The total inlet junction cross-sectional area is

. (3.1-196)

Equation (3.1-192) can be expressed in terms of the average inlet conditions as

. (3.1-197)

In terms of the volume cross-sectional area, AL, the mass flow rate can be written as

(3.1-198)

αf in,
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∑
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∑
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∑
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L AL=
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where  is the liquid volume inlet velocity. By equating Equations (3.1-197) and (3.1-198), canceling

terms and rearranging, the liquid volume inlet velocity can be expressed as

. (3.1-199)

Substituting Equations (3.1-195) and (3.1-196) into Equation (3.1-199) gives

. (3.1-200)

Similarly, the liquid volume outlet velocity can be expressed as

. (3.1-201)

In RELAP5/MOD1, the total liquid momentum of the volume was expressed in terms of the
momentum of the inlet and outlet halves of the volume as (assuming density changes are small)

. (3.1-202)

Thus,

. (3.1-203)

Substitution of Equations (3.1-200) and (3.1-201) into Equation (3.1-203) yields
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(3.1-204)

where old time levels (n) are used for time varying quantities. This arithmetic average of the averaged inlet

and averaged outlet velocities was used in RELAP5/MOD1.3.1-19

The use of the 1/2 factor in front of the inlet and outlet average velocities sometimes resulted in
unphysical results in the convective term of the momentum equations (momentum flux), which uses the
volume average velocities. One example occurred in a vertical pipe that is vertically stratified. Sometimes
the liquid velocity was calculated to be unphysical. Using the liquid and the inlets as an example, the 1/2
factor used in RELAP5/MOD1 was replaced in subsequent versions of ATHENA by

. (3.1-205)

This is also done for the liquid outlets, as well as the vapor/gas inlets and outlets. This approach
resolves the above problem, and it gives a liquid velocity that is similar to the liquid velocity in the
junction below.

Using the modification discussed above, the ATHENA volume-average velocity formulas then have
the form

(3.1-206)
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(3.1-207)

where  and  contain only old time quantities (no velocities).

Equations (3.1-206) and (3.1-207) are used for the momentum flux calculation, evaluation of the
interfacial heat transfer, and the Courant time step limit. For the evaluation of the wall frictional forces and
the wall heat transfer, different formulas are used.

For the evaluation of the wall frictional forces, the magnitude of the volume velocities is needed. An
obvious way to compute this magnitude is to take just the absolute value of the result from Equations
(3.1-206) and (3.1-207). A problem can occur when the magnitude is zero because the inlet velocity is
equal and opposite to the outlet velocity. To avoid this case, the calculation of the magnitude of the volume
velocities used in the wall friction uses the same form as Equations (3.1-206) and (3.1-207), with the
magnitude of the junction velocities used in the formulas. Thus, the equations used in the wall friction
evaluation are

(3.1-208)

. (3.1-209)

For the evaluation of the wall heat transfer rate, a simpler version of Equations (3.1-206) and
(3.1-207) is used for the volume average velocities. This arose during the implementation of the
Groeneveld CHF (see Volume IV) correlation into ATHENA, where it was observed that the total volume
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mass flux GL, which is based on the volume velocities, was not well behaved for the purpose of wall heat

transfer. The mass flux GL is given by

GL = (αgρgvg)L + (αfρfvf)L . (3.1-210)

It was found that the volume mass flux using Equations (3.1-206) and (3.1-207) for vgL and vfL was

as much as 30% below the volumes’ inlet mass flux and outlet mass flux in ATHENA simulations of
Bennett’s CHF experiments (steady-state boiling of water in a heated tube). This Bennett experiment is
discussed in Volume III of this manual. As a result of the problem exhibited in Bennett’s problem, a
simpler version of the volume velocities is used instead for wall heat transfer.

Here, the average inlet phase velocity with respect to the total inlet junction cross-sectional area is

. (3.1-211)

Substitution into Equation (3.1-199) yields the volume inlet liquid velocity, which is given by

. (3.1-212)

Similarly, the volume outlet liquid velocity is given by

. (3.1-213)

Thus, using Equation (3.1-203), the volume liquid velocity used in the wall heat transfer rate
calculation is

. (3.1-214)
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Similarly, the volume vapor/gas velocity used in the wall heat transfer rate calculation is

. (3.1-215)

These forms of the volume average velocity produce the same mass flux at steady-state for the
volume as well as for its inlet and outlet junctions, which is the desired result.

At branch volumes with multiple inlets and/or outlets, the viscous-like term (artificial viscosity)
discussed in Section 3.1.3 has a more general form. This is most easily shown by recasting the finite
difference momentum equations into a donor form for the momentum flux terms. The difference equations
for the sum and difference momentum equations are

(3.1-216)
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(3.1-217)

where the donored volume liquid velocity for the L volume is from

. (3.1-218)

Here,  is from Equation (3.1-200),  is from Equation (3.1-201), and  is from Equation

(3.1-206). Similarly, the donored volume vapor/gas velocity for the L volume is from

. (3.1-219)

The donored volume liquid and vapor/gas velocities for the K volume are similar. The momentum
flux terms that use the velocities shown here default to the equation shown in Section 3.1.3 for a pipe with
no branching.

3.1.7  Multiple Heat Structures

Heat structures represent the solid structures bounding hydrodynamic volumes (i.e., pipe walls) or
solid structures internal to hydrodynamic volumes (i.e., fuel pins).

In previous subsections [see Equations (3.1-5) and (3.1-13)], the quantities, Γw, Qwg, and Qwf, which

are related to heat and mass transfer at and near the wall surface, were introduced. These were discussed as
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if only one wall surface could be attached to a volume. Similar to the possibility of multiple junctions
being connected to the ends of a volume, multiple wall surfaces representing quite different heat transfer

situations can be attached to a volume. Thus the Γw, Qwg, and Qwf quantities involve summations over the

surfaces attached to a volume. Details of the summations are shown in Volume IV.

The previous subsections combined boiling and condensation in the Γw quantity, but showed a

difference in the two situations through the factor ε [Equations (3.1-31) and (3.1-32)]. That notation is
correct for one heat structure connected to a volume and relies on the wall surface possibly boiling, or
condensing, but not both simultaneously. With multiple heat structures, some might be boiling and others

could be condensing. Accordingly, boiling mass transfer, Γw, and condensing mass transfer, Γc, are

separated. Thus, the total mass transfer consists of mass transfer in the bulk fluid (Γig) and mass transfer in

the boundary layers near the walls (Γw and Γc); that is,

Γg = Γig + Γw + Γc . (3.1-220)

Both the logic for multiple heat structures and the logic of some heat structures in boiling, and some
heat structures in condensing are used for both the semi-implicit scheme and the nearly-implicit scheme.

3.1.8  Implicit Hydrodynamic and Heat Structure Coupling

An option exists to implicitly couple the time advancement of the hydrodynamic and heat structure
models. One-dimensional heat conduction (non-reflood) and two-dimensional heat conduction (reflood)
are used to compute temperature distributions within heat structures. Hydrodynamic and heat structure
conditions are coupled through heat structure boundary conditions. The solution matrix for the set of
simultaneous equations resulting from the implicit coupling of hydrodynamic and heat structure
advancement contains the same number of nonzero elements as discussed in the previous sections but with
some of the elements having additional terms. In addition, the total set of simultaneous equations includes
an equation from each mesh point of each heat structure attached to the hydrodynamic volumes. The heat
conduction equations have additional terms related to fluid temperatures introduced in the boundary
conditions. This larger set of simultaneous equations, however, is solved with only a modest increase in
computations compared to the explicit coupling. This implicit coupling can be used with either the
semi-implicit or nearly-implicit advancement.

The purpose of the implicit coupling of hydrodynamic and heat structure time advancement is to
more accurately model the exchange of energy between the structures and fluid in the volumes, to avoid
numerical instabilities due to explicit coupling, and to achieve reduction of computing time through larger
time steps. 

The purpose of the remainder of this section is to show the additional terms added to the
hydrodynamic equations because of the implicit coupling. A complete understanding of the implicit
coupling requires information from Section 4 describing numerical techniques for heat structures,
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information from Section 3.3.10 describing heat transfer correlations, and information from Volume IV,
describing relationships between heat transfer from structures, heat added to volumes, and mass transfer
near the wall associated with wall heat transfer. Equations (3.1-223) through (3.1-226) follow directly
from the material in Volume IV.

With implicit hydrodynamic and heat structure coupling, some source terms in the mass and energy
equations for the semi-implicit and nearly-implicit schemes become implicit. In the continuity equations,

Γw + Γc becomes . In the vapor/gas energy equations, terms involving Γw + Γc and Qwg

become

. (3.1-221)

In the liquid energy equations, terms involving Γw + Γc and Qwf become

. (3.1-222)

The wall heat transfer and mass transfer terms can be written as

(3.1-223)

(3.1-224)

(3.1-225)

(3.1-226)

The variables  are given by Equations (3.1-101) through (3.1-103), where Ts

is the saturation temperature. When noncondensables are present, this Ts is based on the partial pressure of

vapor [Ts(Ps)]. Some of the heat transfer terms, when noncondensables are present, use the saturation
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temperature based on the total pressure P (= Ps + Pn). In Equations (3.1-223) through (3.1-226), the

saturation temperature based on Ps is denoted by Ts(Ps) and the saturation temperature based on P is

denoted by . Thus,  is given by

. (3.1-227)

It should be pointed out that when the explicit coupling of the hydrodynamics and the heat structures
is used, only the first term in Equations (3.1-223) through (3.1-226) is used. These first terms use wall
temperature at new time and fluid temperature at old time.

When the implicit coupling of the hydrodynamics and the heat slabs is used, additional terms are
added to some of the terms of the  matrix in Equation (3.1-118). These additional terms are next shown

as additions to the  matrix elements listed in Equations (3.1-121) through (3.1-144).
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(3.1-234)

(3.1-235)

(3.1-236)

(3.1-237)

(3.1-238)

(3.1-239)

3.1.9  Numerical Solution of Boron Transport Equation

The boron field and its attendant modeling assumptions were discussed in Section 3.1.1.3. The
default numerical scheme for boron solute tracking is the upwind difference scheme; a second-order
accurate Godunov scheme can also be used and is activated by the user in the input deck. These two
schemes will next be discussed.

3.1.9.1  Upward Difference Scheme. Applying the upwind difference scheme to the boron
differential Equation (3.1-51) for the semi-implicit scheme, gives

. (3.1-240)

Figure 3.1-5 shows the meaning of the subscripts. Here, the boron densities in the convective terms are
evaluated at old time.
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Applying the upwind scheme to the boron differential Equation (3.1-51) for the nearly-implicit
scheme gives

. (3.1-241)

Here, the boron densities in the convective terms are evaluated at new time. The coefficient matrix
generated by the liquid continuity Equation (3.1-181) is used.

3.1.9.2  Godunov Scheme. Accurate calculation of the boron field is required to simulate the
coupled hydrodynamics and neutron behavior of a reactor. Recent advances in shock-capturing schemes or
the TVD schemes (the oscillation-suppression strategy of the total-variation diminishing scheme) achieve

impressive results for the numerical solution of the advective transport equations.3.1-20,3.1-21,3.1-22,3.1-23

These schemes use locally varying positive artificial diffusion or viscosity (first order upwind) to suppress
oscillations combined with local negative viscosity (such as first order downwinding) to compress or

steepen the front. Rider and Woodruff3.1-24 reported that an algorithm using a second-order accurate
Godunov method with a highly compressive limiter can adequately solve the advective transport equation
for solute tracking. This method is chosen to solve the boron transport Equation (3.1-51) because it is
consistent with ATHENA numerics and is applicable to complex geometry.

A second-order accurate Godunov method to solve the boron transport equation was implemented in
ATHENA. The new method significantly improves the results as compared with that using the highly
diffusive first-order upwind difference previously used.

The equation governing boron transport, Equation (3.1-51), can be rewritten in a control volume (V)
with surface area  as

. (3.1-242)

. 

Figure 3.1-5 Nodalization for boron numerics.
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The use of the second-order accurate Godunov method to solve Equation (3.1-242) is well

documented by Rider and Woodruff3.1-23. The essential numerics are summarized below.

The numerical solution of Equation (3.1-242) can be written as

(3.1-243)

where Figure 3.1-5 shows the meaning of the subscripts.

The flux  in junction j+1 is written as

, (3.1-244)

where volumes L and M are the volumes to the left and right of junction j+1. The time-centered velocity in
junction j+1 is given by

. (3.1-245)

The boron density in junction j+1 (extrapolated from the left and from the right) is expressed as

(3.1-246)

and

(3.1-247)

where  and  are volume-centered limited gradients in volumes L and M.

A similar equation can be written for  (using volumes K and L instead of volumes L and M).

The volume-centered limited gradient in volume L, , is given as
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. (3.1-248)

Similar equations can be written for SK and SM.

Note that both the superbee limiter of Roe3.1-25  and an artificial compression factor3.1-26 (1

+ θL ωL) are used in the computation of the volume-centered limited gradient. The superbee limiter is

needed to ensure that the boron density is always positive and the artificial compression factor is used
because the number of grid points in modeling the reactor system tend to be relatively small. These factors

also ensure that the method is a TVD scheme.3.1-22 The superbee limiter is defined as

(3.1-249)

where

(3.1-250)

(3.1-251)

and

. (3.1-252)

In the artificial compression factor (1 + θL ωL), the discontinuity detector θL is given as

. (3.1-253)

The parameter ωL is chosen to be a function of the local Courant number , and is given by

ωL  =  min (νL, 1 - νL) . (3.1-254)
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Note that both the superbee limiter of Roe and the artificial compression factor are written as functions of
the ratio of the gradients of the boron density across the junctions at the left and right sides of volume L.

In modeling a reactor system, there are components containing volumes to which multiple junctions

are connected to form a multi-dimensional flow network. The cell-centered limited gradient  is set to

zero in these volumes and the Godunov scheme reverts to the upwind difference scheme for these volumes.

The above numerical solution is used when the semi-implicit scheme is chosen to solve the field
equations. If the nearly-implicit scheme is employed to solve the field equations, the time-step used in the
scheme may be greater than the material Courant limit. A subcycling calculation of the boron transport is
implemented for the nearly-implicit scheme. In the method, the boron transport is integrated within each
large time step taken by the advancement of the field equations. The time step used in the boron calculation
is limited by the Courant condition. The liquid velocity used in the boron calculation is interpolated from
the results of the field equations. The boron transport is calculated in such a fashion such that solutions of
the field equations and boron transport are synchronized in the same large time step.

3.1.10  Numerical Solution of Radionuclide Transport Equations

The radionuclide transport model and its attendant modeling assumptions were discussed in Section
3.1.1.4. The numerical scheme for radionuclide transport is the upwind difference scheme discussed in
Section 3.1.9.1 for the boron transport equation. 

3.1.10.1  Semi-Implicit Solution Algorithm. Applying the upwind difference scheme to the
radionuclide transport differential equation for the semi-implicit numerical solution scheme gives

(3.1-255)

where Ci is the number density of radionuclide specie i, subscript k is either f or g depending upon which

phase transports radionuclide specie i, and Figure 3.1-5 shows the meaning of the other subscripts.

The source term in Equation (3.1-255) represents several different processes that may produce or
destroy a radionuclide specie. The production processes include addition of the specie from an external
source (modelled in ATHENA using general tables or control variables) and production of the radionuclide
specie by neutron capture in a parent radionuclide specie. The processes that destroy a radionuclide specie
are radioactive decay of the specie and neutron absorption in the specie. The source term is given by the
sum of these processes

 . (3.1-256)

The external source is given by
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(3.1-257)

where Fi,L is the flow rate of an external source of radionuclide i  into volume L in kg/sec obtained from a

general table or control variable, Na is Avogadro’s number, and Mwi is the molecular weight of

radionuclide specie in kg/kg-mole.

The production source by neutron capture in a parent nuclide is given by

(3.1-258)

where 

 = number density of parent radionuclide p of radionuclide i in volume L,

= neutron production cross section in parent radionuclide p of radionuclide specie

i for neutron energy group g,

Ng = number of neutron energy group in the nodal kinetics model,

VL,T = total volume of hydraulic volumes in neutron kinetics zone to which volume L

belongs,

Wi = user input weight factor, and

= flux-volume integral in neutron energy group g in neutron kinetics zone to

which volume L belongs.

The flux-volume intergal and the volume ratio need further explanation. The neutron kinetics model solves
for the neutron flux in a set of kinetics nodes that are different from but that overlay the hydraulic volumes
and the heat structures in the reactor code. The overlap is defined by zones. A zone is a collection of
hydraulic volumes and heat structures and a hydraulic volume or heat structure may belong to one and only
one zone. The average fluid properties and structural temperatures are computed as a weighted sum of the
properties in the volumes and heat structures in the zone, and these average properties are used to compute
the neutron cross sections in the neutron kinetics nodes that overlap the zone. The neutron flux can then be
computed in the kinetics nodes. The absorption and production processes need to know the neutron
flux-integral in the hydraulic volume, but the code only computes it in the kinetics nodes. The flux-volume
integral in the hydraulic volume is computed as the flux-volume integral in the kinetics nodes that
comprise the zone (computed as the sum of the product of the fluxes in the kinetics nodes and the volume

Xi L,
n Fi L, Na

MwiVL
------------------=

Pi L,
n Cp L,

n σp g,
VL

VL T,
-----------WiΦL T,

g

g 1=

Ng

∑=

Cp L,
n

σp g,

ΦL T,
g
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of the kinetics nodes) to which the particular volume belongs multiplied by the ratio of the volume in the
particular volume to the total volume in all of the volumes belonging to the zone and a user input weight
factor. The weight factor is used to account for the fact that the kinetics nodes overlap the heat structures as
well as the hydraulic volumes (see Section 7.2.5 of this volume of the manual for a more complete
discussion of kinetics nodes and zones). 

The decay source (actually a sink) is given by,

(3.1-259)

where λi is the decay constant for radionuclide specie i given by

(3.1-260)

and Ti is the half-life of radionuclide specie i in seconds. 

The neutron absorption source  (actually a sink) is given by an equation similar to Equation

(3.1-258) except that the neutron cross section is a summation over the production cross sections for all
radionuclides for which radionuclide i is the parent. It is given by

(3.1-261)

where the summation over k denotes the fact that radionuclide specie i may be the parent specie for
multiple daughter radionuclide species and Nk is the number of radionuclide species for which

radionuclide specie i is the parent.

3.1.10.2  Nearly-implicit Solution Algorithm. The nearly-implicit solution of the radionuclide
transport equations is similar to the semi-implicit solutions except that the time level of several terms in the
equation have been changed. The  conservation equation is given by

(3.1-262)

where the source term has been divided into two parts, a part that is evaluated at the beginning of the time
step (i.e, explicitly) and a part that the evaluated implicitly (i.e., at the end of the time step). The explicit
parts of the source are the external source, the production source, and the absorption source. The explicit
source is given by given by

Di L,
n λiCi L,

n=

λi
2ln

Ti
--------=

Ai L,
n

Ai L,
n Ci L,

n VL

VL T,
-----------WiΦL T,

g σk g,

k 1=

Nk

∑
g 1=

Ng

∑=

VL Ci L,
n 1+ Ci L,

n–( ) C· i j 1+,
n 1+

vk j 1+,
n 1+ Aj 1+ C· i j,

n 1+
vk j,

n 1+ Aj–( )∆t+ ∆tVL Si L,
1 n, Si L,

2 n 1+,–( )=
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where the three terms are given by Equations (3.1-257), (3.1-258), and (3.1-261) respectively. The implicit
part of the source is the decay source and is given by

(3.1-263)

where the implicit decay source is given by

 . (3.1-264)

The resulting equation contains contributions for the neighboring volumes in the flux terms just like
the  solution equations for the second step of the nearly-implicit solution algorithm for the hydraulic
volumes. These equations are assembled into a closed system of equations and are solved in the same way
that the hydraulic equations are solved in the second step of the nearly-implicit solution algorithm.
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3.2  State Relationships

The six-equation model uses five independent state (thermodynamic fluid) variables with an
additional equation for the noncondensable gas component. The independent state variables are chosen to

be P, αg, Ug, Uf, and Xn. All the remaining thermodynamic fluid variables (temperatures, densities, partial

pressures, qualities, etc.) are expressed as functions of these five independent state variables. In addition to
these variables, several state derivatives are needed for some of the linearizations used in the numerical
scheme. This section contains three parts. The first discusses the state property derivatives needed in the
numerical scheme. The second section develops the appropriate derivative formulas for the single
component case. The third section does the same for the two-phase, two-component case.

3.2.1  State Equations

To expand the time derivatives of the phasic densities in terms of these independent state variables
using two-term Taylor series expansions, the following derivatives of the phasic densities are needed:

.

The interphase mass and heat transfer models use an implicit (linearized) evaluation of the
temperature potentials TI - Tf and TI - Tg. The quantity TI is the temperature that exists at the phase

interface. For a single-component mixture, we have

TI  =  Ts(P) (3.2-1)

where the superscript s denotes a saturation value. In the presence of a noncondensable mixed with the

vapor, we assume3.2-1

TI  =  Ts(Ps) (3.2-2)

where Ps is the partial pressure of the vapor in the vapor/gas phase. The vapor/gas phase properties for a

two-component mixture can be described with three independent properties.3.2-2 In particular, the vapor
partial pressure, Ps, can be expressed as

Ps  =  Ps (P, Xn, Ug) . (3.2-3)

Substituting Equation (3.2-3) into Equation (3.2-2) gives the interface temperature, TI, as the desired

function of P, Xn, and Ug.a The implicit (linearized) evaluation of the temperature potentials in the

numerical scheme requires the following derivatives of the phasic and interface temperatures:

∂ρg

∂P
-------- 

 
Ug Xn,

,   ∂ρg

∂Ug
--------- 

 
P Xn,

,   ∂ρg

∂Xn
--------- 

 
P Ug,

,   ∂ρf

∂P
-------- 

 
Uf

,   ∂ρf

∂Uf
--------- 

 
P
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.

If we have a single component, the Xn derivatives are zero and

(3.2-4)

since Ts is only a function of P for this case.

In addition to these derivatives, the basic phasic properties as functions of P, Ug, Uf, and Xn are

needed, along with the homogeneous equilibrium sound speed for the critical flow model.

The basic properties for light water are calculated from default thermodynamic tables3.2-3,3.2-4,3.2-5

that tabulate saturation properties as a function of temperature, saturation properties as a function of
pressure, and single-phase properties as a function of pressure and temperature. These tables are based on
the 1967 ASME Steam Tables, which are calculated using the 1967 International Formulation Committee
(IFC) Formulation for Industrial Use and is known as IFC-67. The properties and derivatives in the tables

are saturation pressure, saturation temperature, specific volume (υ), specific internal energy, and three

derivatives [the isobaric thermal expansion coefficient (β), the isothermal compressibility (κ), and the
specific heat at constant pressure (Cp)]. The accuracy of the default thermodynamic tables can be improved

(under the penalty of increased storage requirements) by increasing the number of pressure and
temperature points in the input data to the thermodynamic table generation subroutine. This can sometimes
improve code performance by reducing mass error.

The basic properties for light water can also be calculated from optional (activated by the user in the

input deck) thermodynamic tables3.2-6 that tabulate saturation properties as a function of temperature,
saturation properties as a function of pressure, and single-phase properties as a function of pressure and
specific internal energy. These tables are based on the 1984 U. S. National Bureau of Standards and the
National Research Council of Canada (NBS/NRC) Steam Tables. The properties and derivatives in the

tables are saturation pressure, saturation temperature, specific volume (υ), temperature, and three

derivatives [the isobaric thermal expansion coefficient (β), the isothermal compressibility (κ), and the
specific heat at constant pressure (Cp)]. The accuracy of these optional thermodynamic tables can be

improved (under the penalty of increased storage requirements) by increasing the number of pressure and
specific internal energy points in the input data to the thermodynamic table generation subroutine. This can
sometimes improve code performance by reducing mass error.

a. The properties ρg and Tg could have initially been written with Ps, Xn, Ug as the independent arguments.

Equation (3.2-3) would then be used to write ρg and Tg, with P, Xn, and Ug as the independent variables.

∂Tg

∂P
--------- 

 
Ug Xn,

, ∂Tg

∂Ug
--------- 

 
P Xn,

, ∂Tg

∂Xn
--------- 

 
P Ug,

, ∂Tf

∂P
-------- 

 
Uf

, ∂Tf

∂Uf
--------- 

 
P

∂Ts

∂P
-------- 

 
Ug Xn,

, ∂Ts

∂Ug
--------- 

 
P Xn,

, ∂Ts

∂Xn
--------- 

 
P Ug,

,

∂Ts

∂Ug
--------- 

 
P

0=
INEEL-EXT-98-00834-V1 3-78



ATHENA/2.3
The basic properties for light water can also be calculated from optional (activated by the user in the

input deck) thermodynamic tables3.2-7 that tabulate saturation properties as a function of temperature,
saturation properties as a function of pressure, and single-phase properties as a function of pressure and
temperature. These tables are based on the 1995 Steam Tables from the International Association for the
Properties of Water and Steam (IAPWS); it is known as IAPWS-95. IAPWS also released an industrial
formulation in 1997 (known as IAPWS-97), which is not as accurate, but more efficient than the 1995
formulation. Since the steam tables in ATHENA are only built once (during installation), the code uses
IAPWS-95 because it is more accurate. The properties and derivatives in the tables are saturation pressure,

saturation temperature, specific volume (υ), specific internal energy, and three derivatives [the isobaric

thermal expansion coefficient (β), the isothermal compressibility (κ), and the specific heat at constant
pressure (Cp)]. The accuracy of these thermodynamic tables can be improved (under the penalty of

increased storage requirements) by increasing the number of pressure and temperature points in the input
data to the thermodynamic table generation subroutine. This can sometimes improve code performance by
reducing mass error.

3.2.2  Single-Component, Two-Phase Mixture

For the purposes of this manual, a single-component, two-phase mixture is referred to as Case 1.
Case 1 is straightforward. Liquid properties are obtained from the thermodynamic tables, given P and Uf.

All the desired density and temperature derivatives can then be obtained from the derivatives κf, βf, and

Cpf.
3.2-8 The desired derivatives are given as

(3.2-5)

(3.2-6)

(3.2-7)

. (3.2-8)

Parallel formulae hold for the vapor phase, with P and Ug as the independent variables.

For the default case, the only nonstandard feature involved in the evaluation of the formulae in

Equations (3.2-5) through (3.2-8) is the calculation of υ, T, κ, β, and Cp if the vapor is subcooled or the

∂ρf

∂Uf
--------- 

 
P

  υfβf

Cpf υfβfP–( )υf
2

--------------------------------------–=

∂Tf

∂Uf
--------- 

 
P

1
Cpf υfβfP–
---------------------------=

∂ρf

∂P
-------- 

 
Uf

Cpfυfκf Tf υfβf( )2–

Cpf υfβfP–( )υf
2

----------------------------------------------=

∂Tf

∂P
-------- 

 
Uf

  Pυfκf Tfυfβf–
Cpf υfβfP–

-----------------------------------–=
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liquid is superheated, i.e., metastable states. A constant pressure extrapolation from the saturation state is
used for the temperature and specific volume for metastable states. Using the first two terms of a Taylor
series, this gives

(3.2-9)

. (3.2-10)

In these Equations, (3.2-9) and (3.2-10), the argument P indicates a saturation value.

To obtain the properties β, κ, and Cp corresponding to the extrapolated υ and T, the extrapolation

formulas are differentiated. Taking definitions and the appropriate derivatives of Equation (3.2-9) and
(3.2-10) gives

(3.2-11)

(3.2-12)

(3.2-13)

Equation (3.2-11) shows that the extrapolated Cp is equal to the saturation value . Equation

(3.2-12) gives the extrapolated β as a function of the saturation properties and the extrapolated υ. Equation

(3.2-13) gives the extrapolated κ as a function of the extrapolated properties and saturation properties. The

extrapolated κ in Equation (3.2-13) involves a change of saturation properties along the saturation line. In

particular,  involves a second derivative of specific volume. Since no second-order derivatives are

available from the thermodynamic property tables, this term was approximated for the vapor/gas phase by
assuming that the fluid behaves as an ideal gas. With this assumption, the last term in Equation (3.2-13)

vanishes and the appropriate formula for the vapor phase (subcooled vapor) κ is

T  Ts P( ) 1
Cp

s P( ) Pυs P( )βs P( )–
---------------------------------------------------- U Us P( )–[ ]+≈

υ  υs P( ) υs P( )βs P( ) T Ts P( )–[ ]+≈

Cp P T,( ) ∆  ∂h
∂T
------ 

 
P

∂U
∂T
------- 

 
P

P ∂υ
∂T
------ 

 
P

+ Cp
s P( )= =

β P T,( ) ∆  1
υ
--- ∂υ

∂T
------ 

 
p

υs P( )βs P( )
υ P T,( )

---------------------------=

κ P T,( ) ∆   1
υ
--- ∂υ

∂P
------ 

 
T

– υs P( ) T Ts P( )–[ ]υs P( )βs P( )+{ } κs P( )
υ P T,( )
------------------=

 T Ts P( )–[ ] υs P( )
υ P T,( )
------------------ dβs P( )

dP
---------------- βs P( )[ ]+ dTs P( )

dP
-----------------

 
 
 

.–
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κg (P, Tg)  =  (3.2-14)

where Equation (3.2-10) has been used to simplify the results.

For the liquid phase extrapolation (superheated liquid), a hand calculation shows that the 

term in Equation (3.2-13) is the largest of the correction terms. Since this term cannot be obtained from the
thermodynamic property tables, only the first term in Equation (3.2-13) is retained, i.e.,

. (3.2-15)

For the 1984 optional case, the 1984 NBS/NRC Steam Tables3.2-6 contain metastable properties for
water and steam; thus, the extrapolation is not needed. For the 1995 optional case (IAPWS-95 Steam

Tables3.2-7 ), extrapolation similar to the default case is used for the metastable properties.

The homogeneous sound speed (a) for a two-phase mixture is calculated from a standard
homogeneous equilibrium formula (see Volume IV, Section 7, Appendix 7A) using the appropriate

saturation values for T, υ, κ, β and Cp. For equilibrium flow, the quality is assumed to change during the

flow. Here the liquid vaporizes or the vapor condenses, and the liquid and vapor are always in equilibrium.
The sound speed formula given by

(3.2-16)

is used, where from Clapeyron’s equation

, (3.2-17)

(3.2-18)

and Xe is the equilibrium quality used in the sound speed, which is given by

κg
s P( )

dβs P( )
dP

----------------

κf P Tf,( )
υf

s P( )κf
s P( )

υf P Tf,( )
---------------------------=

a2
υ2 dPs
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-------- 

 
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-------- υg
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-------- κg
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dT
-------- 2βg

s– 
 + 1 Xe–( )
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s

Ts
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sdPs

dT
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sdPs

dT
-------- 2βf

s– 
 ++

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

dPs

dT
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hg
s hf
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Ts υg
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υ Xeυg
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s+=
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, (3.2-19)

where  is the static quality. It is noted that the derivative  used in

the numerical solution scheme is given by the reciprocal of Equation (3.2-17)

The homogeneous sound speed for both single-phase liquid (Xe = 0) and single-phase vapor (Xe = 1)

is calculated from a standard homogeneous frozen formula (see Volume IV, Section 7, Appendix 7A). For
frozen flow, the quality is assumed to not change during the flow. Here the liquid is assumed not to
vaporize, the vapor is assumed not to condense, and the liquid and vapor are not in equilibrium. It is given
by

(3.2-20)

and the thermodynamic properties and derivatives are either liquid or vapor quantities, depending on the
phase present.

For this Case 1, the transport properties phasic viscosities µg, µf, phasic thermal conductivities kg, kf,

and surface tension σ are evaluated as functions of the local thermodynamic properties. For the default

case, correlations from the 1967 ASME Steam Tables3.2-3 and Schmidt3.2-9 are used for these transport
properties for steam and liquid water. For the 1984 optional case, correlations from the 1984 NBS/NRC

Steam Tables3.2-6 are used for these transport properties for steam and liquid water. For the 1995 optional

case, tables based on correlations from the IAPWS-95 Steam Tables3.2-7 are used for these transport
properties for steam and liquid water.

3.2.3  Two-Component, Two-Phase Mixture

This case is referred to as Case 2. The liquid phasic properties and derivatives are calculated in
exactly the same manner as described in Case 1 (see Section 3.2.2); we assume that the noncondensable
component is present only in the vapor/gas phase.

The properties for the vapor/gas phase are calculated assuming a modified Gibbs-Dalton mixture of
vapor (real gas from thermodynamic table data) and an ideal noncondensable gas. The modified
Gibbs-Dalton mixture is based upon the following assumptions:

Xe
XUg 1 X–( )Uf+[ ] Uf

s–

Ug
s Uf

s–
----------------------------------------------------------=

X X̂g αgρg( ) αgρg αfρf+( )⁄= =
Pd

dTS

a υ

CP

Tυβ
----------- 

 

υ κ
CP

Tυβ
----------- 

  β–

---------------------------------------

 
 
 
 
 
 
 

1 2⁄

=
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(3.2-21)

P  =  Pn + Ps (3.2-22)

Ug  =  XnUn + (1 - Xn)Us (3.2-23)

υg  =  Xnυn = (1 - Xn) υs (3.2-24)

where Ps and Pni are the partial pressures of the vapor and the individual noncondensable components,

respectively. The specific internal energies, Us, Un, and the specific volumes, υs, υn, are evaluated at the

vapor/gas temperature and the respective partial pressures. The vapor/gas properties are obtained from the
thermodynamic tables, and the noncondensable state equations are

Pnυn  =  RnTg (3.2-25)

and

(3.2-26)

where

Rn = (3.2-27)

Co = (3.2-28)

Do = (3.2-29)

Pn Pni

i 1=

N

∑=

Un

Uo C+ oTg

Uo C+ oTg
1
2
---Do Tg To–( )2 1

3
---Eo Tg To–( )3 1

4
---Fo Tg To–( )4+ ++







=
Tg T0<

Tg T0≥

RniXni
i 1=

N

∑

Co ni, Xni
i 1=

N

∑

Do ni, Xni
i 1=

N

∑
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Eo = (3.2-30)

Fo = (3.2-31)

Uo = (3.2-32)

To = 250 K. (3.2-33)

An alternate but equivalent method of defining the specific internal energy of a mixture of noncondensable
gases [See Equation (3.2-26)]  is as follows.  The specific internal energy of each individual
noncondensable gas is expressed as

(3.2-34)

and the specific internal energy of a mixture of noncondensable gases is defined as

(3.2-35)

Table 3.2-1 lists the values used by the code for Rni, Co,ni, Do,ni, Eo,ni, Fo,ni, and Uo,ni in SI units. The 

values for Rni are given as the universal gas constant 8,314.3 J/kg-mole•K divided by the molecular weight 

(kg/kg-mole). The temperature To is the upper limit at which the ideal specific heat is no longer applicable, 

and the higher order effects have to be taken into account. For the first eight noncondensable gases, Co,ni is 

the ideal specific heat at constant volume, i.e., Co,ni = 1.5 Rni for a monatomic gas, and Co,ni = 2.5 Rni for 

a diatomic gas, the values of Do,ni and Uo,ni are obtained by least-squares fitting to the data reported by 

Reynolds3.2-10 for 250 K to 700 K, and the values of Eo,ni and Fo,ni are zero. For the last three 

noncondensable gases, the values of the constants Co,ni, Do,ni, Eo,ni, and Fo,ni were determined by the 

method of least squares using values from Rivken3.2-11 for temperatures between 250 K and 289 K and 

from Avallone3.2-12 for temperatures between 289 K and 3,000 K. The fitted values of  Co,ni/ Rni are 2.46 

for oxygen and 2.34 for carbon monoxide, which are close to the 2.5 value derived from kinetic theory for 

Eo ni, Xni
i 1=

N

∑

Fo ni, Xni
i 1=

N

∑

Uo ni, Xni
i 1=

N

∑

Un i,

Uo ni, C+ o ni, Tg

Uo ni, C+ o ni, Tg
1
2
---Do ni, Tg To–( )2 1

3
---Eo ni, Tg To–( )3 1

4
---Fo ni, Tg To–( )4+ ++







=
Tg T0<

Tg T0≥

Un Un i, Xni
i 1=

N

∑=
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rigid diatomic molecules (Zucrow and Hoffman3.2-13). The fitted value of Co,ni/ Rni for carbon dioxide is 

3.49, which is reasonably close to the theoretical value of 3.0 for rigid polyatomic molecules.

Given P, Ug, and Xn, we must solve Equations (3.2-21) through (3.2-24) implicitly to find the state of

the vapor/gas phase. If Equation (3.2-22) is used to eliminate Pn, and Equation (3.2-25) is used for υn,

Equations (3.2-23) and (3.2-24) can be written as

(3.2-36)

and

, (3.2-37)

where Equation (3.2-24) was divided by the temperature and multiplied by the partial pressures to obtain
Equation (3.2-37). If P, Ug, and Xn are known, Equations (3.2-36) and (3.2-37) implicitly determine Us

and Ps.

Table 3.2-1 Values of Rni, Co,ni, Do,ni, Eo,ni, Fo,ni, and Uo,ni for various noncondensable gases.

 Gas
Rni

(J/kg•K)
Co,ni

(J/kg•K)

Do,ni

(J/kg•K2)

Eo,ni

(J/kg•K3)

Fo,ni

(J/kg•K4)

Uo,ni
(J/kg)

Helium 8,314.3/4.002598 3,115.839 0.003455924 0.0 0.0 13,256.44

Hydrogen 8,314.3/2.01593 10,310.75 0.522573 0.0 0.0 182,783.4

Nitrogen 8,314.3/28.01403 741.9764 0.1184518 0.0 0.0 145,725.884

Krypton 8,314.3/83.800 148.824 0.0035 0.0 0.0 122,666.5

Xenon 8,314.3/131.300 94.9084 0.0035 0.0 0.0 122,666.5

Air 8,314.3/28.963 715.0 0.10329037 0.0 0.0 158,990.52

Argon 8,314.3/39.948 312.192 0.003517 0.0 0.0 122,666.5

SF6 8,314.3/146.05 793.399 0.000001 0.0 0.0 0.0

Oxygen 8,314.3/32.000 639.8541 0.3537302 -1.613807x10-4 2.923424x10-8 1,641.42

Carbon 
Dioxide

8,314.3/44.010 658.7377 0.7563373 -3.726885x10-4 6.513268x10-8 -41,467.2

Carbon 
Monoxide

8,314.3/28.010 693.2758 0.3421647 -1.216078x10-4 1.503636x10-8 14,231.1

f1 1 Xn–( )Us XnUn Tg Us Ps,( )[ ] Ug–+ 0= =

f2 1 Xn–( )
υs Us Ps,( )Ps

Tg Us Ps,( )
----------------------------- P Ps–( ) XnRnPs– 0= =
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To obtain the derivatives needed in the numerical scheme, we must evaluate the derivatives of Us and

Ps with respect to P, Ug, and Xn. These derivatives can be obtained from Equations (3.2-36) and (3.2-37)

by the use of the chain rule and implicit differentiation, along with using , ,

, , , and . For example, taking the derivative

of Equations (3.2-36) and (3.2-37) with respect to P using  and , and

recalling that Ps = Ps(P,Ug,Xn) and Us = Us(P,Ug,Xn), we obtain

(3.2-38)

as a linear system of two equations determining

.

In Equation (3.2-38),

(3.2-39)

is the equivalent gas constant for the vapor,

(3.2-40)

and

. (3.2-41)

P∂
∂f1

 
 

Ug Xn,
0=

Ug∂
∂f1

 
 

P Xn,
0=

Xn∂
∂f1

 
 

P Ug,
0=

P∂
∂f2

 
 

Ug Xn,
0=

Ug∂
∂f2

 
 

P Xn,
0=

Xn∂
∂f2

 
 

P U, g

0=

P∂
∂f1

 
 

Ug Xn,
0=

P∂
∂f2

 
 

Ug Xn,
0=

Xn
dUn

dTg
--------- 

  ∂Tg

∂Ps
--------- 

 
Us

1 Xn– Xn
dUn

dTg
--------- 

  ∂Tg

∂Us
--------- 

 
Ps

+

XnRn– 1 Xn–( )Rs– TERM2
TERM1+

•

∂Ps

∂P
-------- 

 
Ug Xn,

∂Us

∂P
--------- 

 
Ug Xn,

0

1 Xn–( )– Rs

=

∂Ps

∂P
-------- 

 
Ug Xn,

and ∂Us

∂P
--------- 

 
Ug Xn,

Rs
Psυs

Tg
----------=

TERM1 1 Xn–( )PnRs
1
Ps
----- 1

υs
-----

∂υs

∂Ps
-------- 

 
Us

1
Tg
-----

∂Tg

∂Ps
--------- 

 
Us

–+=

TERM2 1 Xn–( )PnRs
1
υs
-----

∂υs

∂Us
--------- 

 
Ps

1
Tg
-----

∂Tg

∂Us
--------- 

 
Ps

–=
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To obtain the derivatives of Ps and Us with respect to Ug and Xn, we repeat the above development

taking derivatives of Equations (3.2-36) and (3.2-37) with respect to Ug and Xn. In each case, linear

equations parallel to those in Equation (3.2-38) are obtained. In fact, the left side matrix is exactly the
same, and the right side vector changes.

Having obtained all the derivatives of Ps and Us, it is relatively easy to obtain the temperature

derivatives needed for the vapor/gas phase. From the chain rule, we have

(3.2-42)

(3.2-43)

(3.2-44)

where

are the standard phasic derivatives for the vapor phase (see Case1, Section 3.2.2, vapor phase). Equations
(3.2-42) through (3.2-44) give all the desired vapor/gas temperature derivatives. The interface temperature
derivatives are obtained from Clapeyron’s equation and the known Ps derivatives, i.e.,

(3.2-45)

(3.2-46)

(3.2-47)

where  is given by the reciprocal of Equation (3.2-17). The phasic enthalpies and phasic specific

volumes in Equation (3.2-17) are evaluated at Ps.

∂Tg

∂P
--------- 

 
Ug Xn,

∂Tg

∂Ps
--------- 

 
Us

∂Ps

∂P
-------- 

 
Ug Xn,

∂Tg

∂Us
--------- 

 
Ps

∂Us

∂P
--------- 

 
Ug Xn,

+=

∂Tg

∂Ug
--------- 

 
P Xn,

∂Tg

∂Ps
--------- 

 
Us

∂Ps

∂Ug
--------- 

 
P Xn,

∂Tg

∂Us
--------- 

 
Ps

∂Us

∂Ug
--------- 

 
P Xn,

+=

∂Tg

∂Xn
--------- 

 
P Ug,

∂Tg

∂Ps
--------- 

 
Us

∂Ps

∂Xn
--------- 

 
P Ug,

∂Tg

∂Us
--------- 

 
Ps

∂Us

∂Xn
--------- 

 
P Ug,

+=

∂Tg

∂Ps
--------- 

 
Us

and ∂Tg

∂Us
--------- 

 
Ps

∂TI

∂P
-------- 

 
Ug X, n

dTI

dPs
--------

∂Ps

∂P
-------- 

 
Ug Xn,

=

∂TI

∂Ug
--------- 

 
P X, n

dTI

dPs
--------

∂Ps

∂Ug
--------- 

 
P Xn,

=

∂TI

∂Xn
--------- 

 
P U, g

dTI

dPs
--------

∂Ps

∂Xn
--------- 

 
P Ug,

=

dTI
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The derivatives of the densities can be obtained from υg = Xn υn or υg = (1 - Xn) υs, as these two

formulae for the vapor/gas specific volume are equivalent [see Equation (3.2-24)]. A symmetric formula
can be obtained by eliminating Xn from the above two formulae, giving

. (3.2-48)

Using Equation (3.2-48), we have for the derivatives of ρg with respect to P

. (3.2-49)

Similar formulas are obtained when either Ug or Xn is the independent variable. The partial

derivatives on the right side of Equation (3.2-49) are obtained from formulae exactly parallel to those in

Equations (3.2-42) through (3.2-44) with Tg replaced by υs or υn. When taking the derivatives of υn, we

use

. (3.2-50)

Hence, an additional term appears in the parallel formula for Equation (3.2-42) due to the direct

dependence of υn on P.

The liquid properties and derivatives are obtained as above for Case 1. To obtain the vapor/gas
properties, Equations (3.2-36) and (3.2-37) must be solved iteratively. A global Newton iteration in two

variables is used.3.2-14 The iteration variables are Ps and Us. The thermodynamic table subroutine is called

once during each iteration to obtain all the needed vapor properties, and Equations (3.2-25) and (3.2-26)
are used to obtain the noncondensable properties. Once the iteration has converged, the vapor/gas
properties and derivatives are determined from the formulas in this section.

The homogeneous equilibrium sound speed (a) for a noncondensable-vapor-liquid mixture is3.2-2

taken from

(3.2-51)

υg
υsυn

υs υn+
-----------------=

∂ρg

∂P
-------- 

 
Ug X, n

1
υn

2
-----

∂υn

∂P
-------- 

 
Ug Xn,

– 1
υs

2
-----

∂υs

∂P
-------- 

 
Ug Xn,

–=

υn
RnTg Ps υs,( )

P Ps–
------------------------------=

a2 υ2

 ∂υ
∂P
------ 

 
S X̂n,

–

--------------------------=
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where

(3.2-52)

. (3.2-53)

Equation (3.2-52) can be shown to be equivalent to Equation (18) in Reference 3.2-2, where the
relation

(3.2-54)

is used. Equation (3.2-53) is the inverse of Equation (22) (Clausius-Clapeyron relation) in Reference

3.2-2. The quantities  and  in Equation (3.2-52) are obtained from the following

matrix equation:

. (3.2-55)

Equation (3.2-55) is from the first and third equations in Equation (19) in Reference 3.2-2, where
Equation (3.2-54) is used as well as

. (3.2-56)

∂υ
∂P
------ 

 
S X̂n,

1 X̂f–( ) Xn
2υn βn

1
P′s
------ κn+ 

  ∂Ps

∂P
-------- 

 
S X̂n,

κn– Xs
2υs βs

1
P′s
------ κs– 

  ∂Ps

∂P
-------- 

 
S X̂n,

+
 
 
 

=

X̂fυf βf
1

P′s
------

∂Ps

∂P
-------- 

 
S X̂n,

κf– υg υf–( ) ∂X̂s

∂P
--------- 

 
S X̂n,

+ +

P′s
dPs

dT
--------

hs
s hf

s–

Ts υs
s υf

s–( )
--------------------------

Ss
s Sf

s–

υs
s υf

s–
----------------= ==

∂T
∂P
------ 

 
S Xn,

1
P′s
------

∂Ps

∂P
-------- 

 
S Xn,

=

∂Ps

∂P
-------- 

 
S X̂n,

∂X̂s

∂P
--------- 

 
S X̂n,

X̂nυnβn  X̂sυsβs– Ss Sf–

1
P′s
------ X̂nCpn X̂sCps+( ) 1

Tg
----- X̂fCpf

1
Tf
-----+             +

X̂nυn κn βn
1

P′s
------+ 

  X̂sυs κs  βs– 1
P′s
------ 

      + υs–

∂Ps

∂P
-------- 

 
S X̂n,

∂X̂s
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--------- 

 
S X̂n,

•

X̂nυnβn X̂fυfβf+
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=
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In the above formulae, , , , and  are, respectively, mass qualities for vapor,

noncondensable, vapor/gas, and liquid based on the total mixture mass; Xs and Xn are the mass qualities

for vapor and noncondensable based on the vapor/gas mixture mass. Thus, their definitions are

(3.2-57)

(3.2-58)

(3.2-59)

(3.2-60)

(3.2-61)

, (3.2-62)

where

Ms = the mass of the vapor in the vapor/gas phase

Mn = the mass of the noncondensable in the vapor/gas phase

Mg(=Ms+Mn) = the mass of the vapor/gas phase

Mf = the mass of the liquid phase.

The variable X (=  is usually referred to as the static quality.

In Equations (3.2-52) and (3.2-55), the variables βs, κs, and Cps are the vapor variables βg, κg, and

Cpg, discussed in the single component Section 3.2.2. The variables βn, κn, and Cpn are determined using

the standard formulas for the ideal noncondensable gas Equations (3.2-25) and (3.2-26), that is

X̂s X̂n X̂g X̂f

X̂s
Ms

Ms Mn Mf+ +
----------------------------------=

X̂n
Mn

Ms Mn Mf+ +
----------------------------------=

X̂g X Ms Mn+
Ms Mn Mf+ +
----------------------------------

Mg

Mg Mf+
--------------------= = =

X̂f
Mf

Ms Mn Mf+ +
----------------------------------

Mf

Mg Mf+
--------------------= =

Xs
Ms

Ms Mn+
--------------------=

Xn
Mn

Ms Mn+
--------------------=

X̂g )
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(3.2-63)

(3.2-64)

(3.2-65)

The homogeneous sound speed for single-phase vapor/gas is calculated from the same standard
homogeneous frozen formula (see Volume IV, Section 7, Appendix 7A) used for Case 1 [vapor phase,
Equation (3.2-20)]. The thermodynamic properties and derivatives are vapor/gas quantities. The specific

volume (υg) is calculated from Equation (3.2-48). The properties βg, κg, and Cpg are calculated from the

definitions shown in Case 1 [Equations (3.2-11), (3.2-12), and (3.2-13)], where the vapor/gas mixture
derivatives in these equations are obtained from the mixture derivatives from this section of manual (Case
2) using the chain rule.

Evaluation of the sound speed formulas at the saturated equilibrium state requires a second iteration.
To avoid this extra iteration, the sound speed formulas were evaluated using the nonequilibrium state
properties.

For this Case 2, the transport phasic viscosities µg, µf, phasic thermal conductivities kg, kf, and

surface tension σ are evaluated as functions of the local thermodynamic properties. For the default case,

correlations from the 1967 ASME Steam Tables3.2-3 and Schmidt3.2-9 are used for these transport
properties for steam and liquid water. For the 1984 optional case, correlations from the 1984 NBS/NRC

Steam Tables3.2-6 are used for these transport properties for steam and liquid water.  For the 1995 optional

case, tables based on correlations from the IAPWS-95 Steam Tables3.2-7 are used for these transport
properties of steam and liquid water. The presence of noncondensables in the vapor/gas phase is accounted

for by using Wilke’s semi-empirical formula3.2-15 for µg, and by using Mason and Saxena’s analogous

method3.2-16 (with approved modification by Bird, Stewart, and Lightfoot3.2-17) for kg. Using Wilke’s

formula and Mason and Saxena’s method requires values of the viscosity and thermal conductivity for the

various noncondensable gases listed in Table 3.2-1. The formula used for the viscosity of an individual

noncondensable gas is a simple two-constant Sutherland equation3.2-18, and is given by

(3.2-66)

βn
1
Tg
-----=

κn
1
Pn
-----=

Cpn

Co Rn+

Co Do Tg To–( ) Eo Tg To–( )2 Fo Tg To–( )3 Rn+ + + +



=
Tg To<

Tg To≥

µni
µoniTg

1.5

Tg Trefni+
------------------------=
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where a plot of  versus Tg is a straight line with a slope of  and a intercept of  (Trefni is

referred to as the Sutherland constant). Table 3.2-2 lists the values used by the code for µoni and Trefni in

SI units. For the last three noncondensable gases, the values of µoni and Trefni were obtained by fitting the

data of Lemmon et. al3.2-19.

The formula used for the thermal conductivity of an individual noncondensable gas is a simple

two-constant equation from MATPRO3.2-20, and is given by

 . (3.2-67)

Table 3.2-2 lists the values used by the code for Ani and Bni in SI units. For the last three noncondensables,

the values of and were obtained by fitting the data of Lemmon et. al3.2-19.
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3.3  Constitutive Models

The constitutive relations include models for defining flow regimes and flow-regime-related models
for interphase friction, the coefficient of virtual mass, wall friction, wall heat transfer, interphase heat and
mass transfer, and direct (sensible) heat transfer. Heat transfer regimes are defined and used for wall heat
transfer. For the virtual mass, a formula based on the void fraction is used.

In RELAP5/MOD2, all constitutive relations were evaluated using volume-centered conditions;
junction parameters, such as interfacial friction coefficients, were obtained as volume-weighted averages
of the volume-centered values in the volumes on either side of a junction. The procedure for obtaining
junction parameters as averages of volume parameters was adequate when the volumes on either side of a
junction were in the same flow regime and the volume parameters were obtained using the same flow
regime map (i.e., both volumes were horizontal volumes or both volumes were vertical volumes).
Problems were encountered when connecting horizontal volumes to vertical volumes.

These problems have been eliminated in ATHENA by computing the junction interfacial friction
coefficient using junction properties so that the interfacial friction coefficient would be consistent with the
state of the fluid being transported through the junction. The approach has been used successfully in the

TRAC-B code.3.3-1,3.3-2,3.3-3 The independent variables in the flow regime maps for the volumes and
junctions are somewhat different as a result of the finite-difference scheme and staggered mesh used in the
numerical scheme.

The volume and junction flow regime maps will be discussed separately, followed by a discussion of
the interphase friction, coefficient of virtual mass, wall friction, wall heat transfer models, interphase heat
and mass transfer, and direct (sensible) heat transfer. Volume I presents an overview of the constitutive
models, and Volume IV presents more details of the constitutive models.

The volume map is based on volume quantities. It is used for interphase heat and mass transfer, wall
friction, and wall heat transfer. The constitutive relations, in general, include flow regime effects for which
simplified mapping techniques have been developed to control the use of constitutive relation correlations.

The flow regime maps are based on the work of Taitel and Dukler3.3-4,3.3-5 and Ishii.3.3-6,3.3-7,3.3-8

Taitel and Dukler have simplified flow regime classifications and developed semi-empirical relations
to describe flow regime transitions. However, some of their transition criteria are quite complex, and
further simplification has been carried out in order to efficiently apply these criteria in ATHENA. In

addition, post-critical heat flux (CHF) regimes as suggested by Ishii3.3-6 are included.

Four flow regime maps are used: a horizontal map for flow in pipes; a vertical map for flow in pipes,
annuli, and bundles; a high mixing map for flow in pumps; and an ECC mixer map for flow in the
horizontal pipe near the ECC injection port.
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3.3.1  Vertical Volume Flow Regime Map

The vertical flow regime map (for both up and down flow) is for volumes whose inclination

(vertical) angle φ is such that 60 ≤ |φ| < 90 degrees. An interpolation region between vertical and horizontal
flow regimes is used for volumes whose absolute value of the inclination (vertical) angle is between 30 and
60 degrees. This map is modeled as nine regimes--four for pre-CHF heat transfer, four for post-CHF heat
transfer, and one for vertical stratification. For pre-CHF heat transfer, the regimes modeled are the bubbly,
slug, annular-mist, and mist-pre-CHF regimes. Formulations for the first three regimes were utilized by

Vince and Lahey3.3-9 to analyze their data. The mist-pre-CHF regime was added for smoothness. For
post-CHF heat transfer, the bubbly, slug, and annular-mist regimes are transformed to the inverted annular,

inverted slug, and mist regimes, respectively, as suggested by Ishii.3.3-6 The mist-post-CHF regime was
added for symmetry with the mist-pre-CHF regime. The mist flow regimes consist of pure droplet flow
where all of the available liquid is assumed to be entrained and there is no liquid film on the wall.
Unheated components are also modeled, utilizing the pre-CHF map. A schematic representing the

pre-CHF, post-CHF, and transition regimes of the vertical flow regime map is shown in Figure 3.3-1. The

schematic is three-dimensional, to illustrate flow regime transitions as functions of void fraction αg,

average mixture velocity vm, and boiling regime (pre-CHF, transition, and post-dryout) where

(3.3-1)

Gm  =  αgρg|vg| + αfρf|vf| (3.3-2)

ρm  =  αgρg + αfρf . (3.3-3)

The map consists of bubbly, slug, annular-mist, and dispersed (droplet or mist) flows in the pre-CHF
regime; inverted annular, inverted slug, and dispersed (droplet or mist) flows in post-dryout; and vertically
stratified for sufficiently low mixture velocity vm. Transition regions provided in the code are shown. The

flow regime identifiers which appear in the printed output are shown in parenthesis for each of the regimes.
The criteria for defining the boundaries for transition from one regime to another are given by the
following correlations. 

For the bubbly-to-slug transition, Taitel and Dukler3.3-4,3.3-5 suggested that bubbly flow may not
exist in tubes of small diameter where the rise velocity of small bubbles exceeds the rise velocity of Taylor

bubbles. The small bubble rise velocity is given by the correlation3.3-5

(3.3-4)

vm
Gm

ρm
-------=

vsb 1.53 g ρf ρg–( )σ

ρf
2

----------------------------
1 4⁄

1.53 D*σ
Dρf
----------

1 2⁄

= =
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and the Taylor bubble rise velocity is given by the correlation3.3-10

, (3.3-5)

where D* is the dimensionless tube diameter (Bond number) and is given by

. (3.3-6)

(Note: in Reference 3.3-5, ρf - ρg is approximated as ρf; see also Reference 3.3-7 and Reference

3.3-11.) Accordingly, the limiting dimensionless tube diameter allowing the presence of bubbly flow is 

D * ≥  19.11 . (3.3-7)

In the coding, 19.11 has been modified to 22.22 where this value was chosen based on comparisons

with data during the developmental assessment of RELAP5/MOD2.3.3-12 This is discussed further in
Volume IV of this manual.

Figure 3.3-1 Schematic of vertical flow regime map with hatchings indicating transitions.

Vertically stratified (VST)

Transition

Unstratified

Bubbly
(BBY)

SLG/
ANM

Annular
mist (ANM)

Slug
(SLG)

Mist
(MST)

Inverted
slug (ISL)

IAN/
ISL

BBY/IAN

Inverted
annular

IAN/
ISL-

SLG

ISL-
SLG/

ANM

Post-dryout

Transition

Pre-CHF

vTb

αBS αSA αAM

Increasing
vm

αBS αSA

(M
PR

)
(M

PR
/M

PO
)(

M
PO

)

SLG/
ISL ANM/MST

 (IAN)

1.00.0

Increasing void fraction αg

0.0 1.0αAM

αDE

αCD

In
cr

ea
si

ng
 T

g
 - 

T
s

1
2

vTb

vTb 0.35 gD ρf ρg–( )
ρf

-----------------------------
1 2⁄

0.35D* σ
Dρf
---------

1 2⁄
= =

D* D g ρf ρg–( )
σ

------------------------
1 2⁄

=

3-97 INEEL-EXT-98-00834-V1



ATHENA/2.3
Equation (3.3-6) is the dimensionless ratio of tube diameter to film thickness times the Deryagin
number, where the Deryagin number is the ratio of film thickness to the Laplace capillary constant length.

Also, in the limit, as the fluid properties approach the thermodynamic critical pressure, D* = D.

For tubes with diameters satisfying the condition of Equation (3.3-7), the bubble-slug transition

occurs at a void fraction αg = 0.25 for low mass fluxes of G ≤ 2000 kg/m2•s. By combining this void

criterion with Equation (3.3-7) and using 22.22 instead of 19.11, the bubble-slug transition criterion can be
defined such that

. (3.3-8)

Hence, if the local void fraction, αg, exceeds the criterion of Equation (3.3-8), then bubbly flow cannot

exist, since the rise velocity of small bubbles exceeds that of Taylor bubbles. The exponential power of 8 is

used to provide a smooth variation of αL as D* decreases.

For bundles, the bubbly-slug transition (αBS) is constrained from being less than 0.25. This was

necessary to obtain good results in the developmental assessment.

At high mass fluxes of Gm ≥ 3,000 kg/m2•s, bubbly flow with finely dispersed bubbles can exist up

to a void fraction, αg, of 0.5. Then, if the criterion is linearly interpolated between the upper and lower

void limits, the bubbly-slug transition criterion can be written as

αBS  =  αL (3.3-9)

for mass fluxes of Gm < 2,000 kg/m2•s,

αBS  =  αL + 0.001 (0.5 - αL) (Gm - 2000) (3.3-10)

for mass fluxes of 2,000 < Gm < 3,000 kg/m2•s, and

αBS  =  0.5 (3.3-11)

for mass fluxes of Gm ≥ 3,000 kg/m2·s. The flow regime can therefore be said to be in the bubbly regime if

αg < αBS and in the slug regime if αg ≥ αBS.

αg 0.25 min 1.0 D*
22.22
------------- 

  8
,=
INEEL-EXT-98-00834-V1 3-98



ATHENA/2.3
The bubble-slug transition defined by Equations (3.3-9) to (3.3-11) is similar to that given by Taitel

and Dukler,3.3-5 except that their void fraction relation is converted into a form based on liquid and
vapor/gas superficial velocities, and finely dispersed bubbles are also distinguished from ordinary bubbles.

For the slug to annular transition, Taitel et al.3.3-5 and Mishima and Ishii3.3-13 indicate that the
annular flow transition for upflow is principally governed by criteria of the form

(3.3-12)

and

(3.3-13)

with the first criterion (flow reversal) controlling the transition in small tubes and the second criterion

(droplet entrainment) controlling the transition in large tubes. McQuillan and Whalley3.3-14,3.3-15

considered the above criteria using

(3.3-14)

and

Kug,crit  =  3.2 (3.3-15)

and obtained good predictions of the annular flow boundary in each case. Putney3.3-16 has found that better
agreement can be obtained if annular flow occurs when either criterion is satisfied. In terms of the

slug-to-annular transition void fraction αSA, Putney indicates that these criteria take on the form

(3.3-16)

where

jg
* αgvg

gD ρf ρg–( )
ρg

---------------------
1 2⁄

-----------------------------------------   jg crit,
*≥=

Kug
αgvg

gσ
ρf ρg–( )

ρg
2

---------------------
1 4⁄

----------------------------------------   Kug crit,≥=

jg crit,
* 1=

αSA min αcrit
f αcrit

e,( )=
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=  for upflow (3.3-17)

= 0.75 for downflow and countercurrent flow (3.3-18)

and

(3.3-19)

where the void fraction for flow reversal, , is found by combining Equations (3.3-12) and (3.3-14) and

the void fraction for droplet entrainment, , is found by combining Equations (3.3-13) and (3.3-15).

The transition region between the slug flow and annular mist flow regimes is defined by αDE and

αSA where

αDE  =  max(αBS, αSA - 0.05) (3.3-20)

The minimum void fraction for annular mist flow, αSA, is constrained to lie between 0.5 and 0.9. For

bundles, the minimum void fraction for annular mist flow (αSA) is constrained from being greater than 0.8.

This was necessary to obtain good results in the developmental assessment.

For the transition between annular mist and mist pre-CHF (regime MPR in Figure 3.3-1), the value

of αAM is 

αAM  =  0.9999 . (3.3-21)

where all of the available liquid is assumed to be in the form of droplets in the mist regimes.

If the hydrodynamic volume has heat flux from a surrounding wall to the vapor/gas or the reflood

model is turned on for that wall, and the vapor/gas temperature is more than 1 oK superheated, then the
flow regime is a post-CHF regime. For post-CHF heat transfer, the above formulations are also used to
define the regimes. Equations (3.3-9) through (3.3-11) define the inverted annular to inverted slug regime
transition, Equation (3.3-16) defines the inverted slug to mist regime transition, and Equation (3.3-21)

defines the mist to mist post-CHF (regime MPO in Figure 3.3-1) regime transition. The transition region

between inverted slug flow and inverted annular flow regimes is defined by αΒS and αCD where

αcrit
f 1

vg
-----

gD ρf ρg–( )
ρg

-----------------------------
1 2⁄

αcrit
e 3.2

vg
-------

gσ ρf ρg–( )

ρg
2

----------------------------
1 4⁄

=

αcrit
f

αcrit
f
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αCD  =  αBS + 0.2 . (3.3-22)

At low mass fluxes, the possibility exists for vertically stratified conditions. In ATHENA, vertical
flow in a volume cell is considered to be stratified if the following criteria are met:

• The void fraction for the volume above is > 0.7, and the difference between the void
fractions in the volume in question and the void fraction in the volume above or below is
> 0.2. This criterion is the same as the level detection logic for a normal profile from

TRAC-B.3.3-1,3.3-2 If more than one junction is connected to the top, the volume above
with the smallest void fraction will be treated as the “above volume;” if more than one
junction is connected to the bottom, the volume below with the largest void fraction will
be treated as the “below volume.”

• The magnitude of the volume average mixture mass flux is less than the Taylor bubble rise
velocity mass flux. The Taylor bubble criterion is based on the Taylor bubble rise velocity
given by Equation (3.3-5) such that

Gm  <  ρmvTb (3.3-23)

where vTb is the Taylor bubble rise velocity. Hence, if Equation (3.3-23) is true, then transition to vertical

stratification exists; and if Equation (3.3-23) is false, then transition to vertical stratification does not exist.

Fixed numbers are not shown on Figure 3.3-1 for the mass flux limits for the vertical stratification region

because these depend on vTb. The lower transition limit is . The vertical stratification model does not

calculate a mixture level position and is not intended to be a mixture level model. A more mechanistic
level tracking model is described in Section 3.4.8.

3.3.2  Horizontal Volume Flow Regime Map

The horizontal flow regime map is for volumes whose inclination (vertical) angle φ is such that 0 <

|φ| < 30 degrees. An interpolation region between vertical and horizontal flow regimes is used for volumes
whose absolute value of the inclination (vertical) angle is between 30 and 60 degrees. This map is similar
to the vertical flow regime map except that the post-CHF regimes are not included, and a horizontally
stratified regime replaces the vertically stratified regime. The horizontal flow regime map therefore
consists of horizontally stratified, bubbly, slug, annular-mist, and mist pre-CHF regimes. A schematic for

the horizontal flow regime map is shown in Figure 3.3-2. The transition criteria for the bubbly to slug and
the slug to annular mist regimes are somewhat similar to those for the vertical map. 

The bubbly-slug transition criterion is

αBS  =  0.25          Gm <  2,000 kg/m2-s (3.3-24)

1
2
---vTb
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          =  0.25 + 0.00025 (Gm - 2,000)     2,000  <  Gm  <  3,000 kg/m2-s

         =  0.5          Gm  >  3,000 kg/m2-s,

the minimum void fraction for annular mist flow, αSA, is a constant

αSA  =  0.8, (3.3-25)

and the transition region between slug flow and annular mist flow regimes is defined by αDE and αSA

where

αDE  =  0.75 . (3.3-26)

The annular mist to mist pre-CHF transition criterion is

αAM  =  0.9999 . (3.3-27)

The criterion defining the horizontally stratified regime is based on the one developed by Taitel and

Dukler.3.3-4 According to Taitel and Dukler, the flow field is horizontally stratified if the vapor/gas
velocity satisfies the condition

Figure 3.3-2 Schematic of horizontal flow regime map with hatchings indicating transition regions.
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|vg|  <  vcrit (3.3-28)

where vcrit is the vapor/gas velocity above which waves on the horizontal interface will begin the grow and

is given by

(3.3-29)

where θ is given by the solution of Equation (3.1-60). The angle θ (see Figure 3.1-2) is related to the liquid
level with respect to the bottom of the volume.

This condition is modified in the code to handle situations where the flow is stratified but the liquid is

not stagnant as was assumed by Taitel and Dukler.3.3-4 The flow is horizontally stratified if the phasic
velocity difference satisfies the condition

|vg - vf|  <  vcrit (3.3-30)

and the mass flux satisfies the condition

Gm  <  3,000 kg/m2-s . (3.3-31)

If the horizontal stratification conditions of Equations (3.3-30) and (3.3-31) are met, then the flow
field undergoes a transition to the horizontally stratified flow regime. If the conditions of Equations
(3.3-30) and (3.3-31) are not met, then the flow field undergoes a transition to the bubbly, slug, annular
mist, or mist pre-CHF flow regime. The lower transition limit for |vg - vf| is (1/2) vcrit and for Gm is 2,500

kg/m2-s.

3.3.3  High Mixing Volume Flow Regime Map

The high mixing flow regime map (used in pumps and compressors) is based on vapor/gas void

fraction, αg, and consists of a bubbly regime for αg < 0.5, a mist regime for αg > 0.95, and a transition

regime for 0.5 < αg < 0.95. The transition regime is modeled as a mixture of bubbles dispersed in liquid

and droplets dispersed in vapor/gas. A schematic for the high mixing flow regime map is shown in Figure
3.3-3. 

vcrit
1
2
---

ρf ρg–( )gαgA
ρgD θsin

-----------------------------------

1
2
---

1 θcos–( )=
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3.3.4  ECC Mixer Volume Flow Regime Map

Prior to the introduction of the ECCMIX component into RELAP5/MOD3, RELAP5 included the

three previously discussed flow regime maps, as described in the RELAP5/MOD2 manual3.3-17 and in the

RELAP5/MOD2 models and correlations report.3.3-18 None of those, however, would apply specifically to
the condensation process in a horizontal pipe near the emergency core coolant (ECC) injection port. A

flow regime map for condensation inside horizontal tubes is reported by Tandon et al.,3.3-19 and it was
considered a more suitable basis for the interfacial heat transfer calculation in condensation for this

geometry. According to Reference 3.3-19, the two-phase flow patterns during condensation inside a

horizontal pipe may be identified in terms of the local volumetric ratio of liquid and vapor/gas, , and

the nondimensional vapor/gas velocity, , where 

=

Xflow = 

G = αgρgvg + αfρfvf

and D is the diameter of the channel.

Although the condensation flow regime map of Tandon et al.3.3-19 does not include any zone for
bubbly flow, the existence of a bubbly flow regime at very low void fractions cannot be logically excluded,
particularly in a highly turbulent liquid flow. For this reason, a region of bubbly flow was included for void

fractions less than 20% (αg < 0.2). Furthermore, to protect against failure of the numerical solution, it is

Figure 3.3-3 Schematic of high mixing volume flow regime map.
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necessary to specify some reasonable flow pattern for every combination of the volumetric ratio and 

and to include transition zones around some of the boundaries between different flow patterns. The
transition zones are needed for interpolation between the calculated values of the correlations for the
interfacial heat transfer and friction that apply for the different flow patterns. These interpolations prevent
discontinuities that would otherwise exist and that could make the numerical solutions very difficult. With

these considerations, the flow regime map of Reference 3.3-19 was modified, as shown in Figure 3.3-4.
The modified condensation flow regime map comprises eleven different zones that include six basic

patterns and five interpolation zones. Table 3.3-1 shows a list of the basic flow patterns and the
interpolation zones for the ECCMIX component, with their acronyms and flow regime numbers, that are
printed out in the ATHENA output.

Figure 3.3-4 Schematic of ECC mixer volume flow regime map (modified Tandon et al.3.3-19).

Table 3.3-1 List of flow regimes in the ECCMIX component.

Flow regime 
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The variable names that are used in the coding for the coordinates of the condensation flow regime
map are

(3.3-32)

. (3.3-33)

In terms of these variables, the different zones of the flow regime map are as follows:

If voider > 4.0, bubbly flow, MBB.

If 3.0 < voider < 4.0 and stargj < 0.01, transition, MPB.

17 Wavy/annular mist MWA Transition between wavy 
and annular mist flows

18 Annular mist MAM Basic pattern

19 Mist MMS Basic pattern

20 Wavy/slug MWS Transition between wavy 
and slug flows

21 Wavy/plug/slug MWP Transition between 
wavy, plug, and slug 

flows

22 Plug MPL Basic pattern

23 Plug/slug MPS Transition between plug 
and slug flows

24 Slug MSL Basic pattern

25 Plug/bubbly MPB Transition between plug 
and bubbly flows

26 Bubbly MBB Basic pattern

a. Flow regime numbers 1 through 15 are used in ATHENA for flow patterns in other components.

Table 3.3-1 List of flow regimes in the ECCMIX component. (Continued)

Flow regime 

numbera
Flow regime Acronym Remarks

voider 1 αg–
αg
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If 0.5 < voider < 4.0 and stargj > 0.0125, slug flow, MSL.

If 0.625 < voider < 4.0, and 0.01 < stargj < 0.0125, transition, MPS.

If 0.5 < voider < 3.0, and stargj < 0.01, plug flow, MPL.

If 0.5 < voider < 0.625, and 0.01 < stargj < 0.0125, transition, MWP.

If 0.5 < voider < 0.625, and 0.0125 < stargj < 1.0, transition, MWS.

If voider < 0.5 and stargj < 1.0, wavy flow, MWY.

If voider < 0.5, and 1.0 < stargj < 1.125, transition, MWA.

If voider < 0.5, and 1.125 < stargj < 6.0, annular mist, MAM.

If voider < 0.5, and stargj > 6.0, mist flow, MMS.

In the coding, each one of these regions is identified by a flow pattern identification flag, MFLAG,

whose value varies from 1 for wavy flow to 11 for bubbly flow. The flow regime number in Table 3.3-1 is
MFLAG + 15.

In addition to the transition zones that are shown on Figure 3.3-4 and listed in Table 3.3-1, there are
two other transitions, namely:

• Transition between wavy and plug flows.

• Transition between annular mist and mist (or droplet) flows.

Interpolations between the interfacial friction, interfacial heat transfer, and the wall friction rates for
these transitions are performed through the gradual changes in the interfacial area in the first case and the
droplet entrainment fraction in the second case. Hence, there was no need for specifying transition zones
for these on the flow regime map.

3.3.5  Junction Flow Regime Map

The junction map is based on both junction and volume quantities. It is used for the interphase drag
and shear, as well as the coefficient of virtual mass. The flow regime maps used for junctions are the same

as used for the volumes and are based on the work of Taitel and Dukler,3.3-4,3.3-5,3.3-20 Ishii,3.3-6,3.3-8 and

Tandon et al.3.3-19

Junction quantities used in the map decisions are junction phasic velocities, donored (based on phasic
velocities) phasic densities, and donored (based on mixture superficial velocity) surface tension.
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The junction void fraction, , is calculated from either of the volume void fractions of the

neighboring volumes, αg,K or αg,L, using a donor direction based on the mixture superficial velocity, jm. A

cubic spline weighting function is used to smooth the void fraction discontinuity across the junction when
|jm| < 0.465 m/s. The purpose of this method is to use a void fraction that is representative of the real

junction void fraction. This is assumed to have the form

(3.3-34)

where

wj = 1.0                          when jm > 0.465 m/s (3.3-35)

wj =          when -0.465 m/s < jm < 0.465 m/s (3.3-36)

wj = 0                             when jm < -0.465 m/s (3.3-37)

x1 = (3.3-38)

jm = . (3.3-39)

For horizontal stratified flow, the void fraction from the entrainment/pullthrough (or offtake) model
is used (see Section 3.4.2). The case of vertical stratified flow will be discussed in Section 3.3.6.7. The
junction mass flux is determined from

. (3.3-40)

The methods for calculating  and Gj are the same ones that are used in TRAC-B.3.3-1,3.3-2

As with the volumes, four junction flow regime maps are used. They are a horizontal map for flow in
pipes; a vertical map for flow in pipes, annuli, and bundles; a high mixing map for flow in pumps; and an
ECC mixer map for flow in the horizontal pipe near the ECC injection port. These will not be discussed in
any detail because they are similar to the volumes flow regime maps. The decision of whether a junction is
in the horizontal or vertical junction flow regime is done slightly differently than for a volume. The
junction inclination (vertical) angle is determined from either of the volume inclination (vertical) angles,

φK or φL, based on input by the user using a donor direction based on the mixture superficial velocity, jm.

The formula used is similar to that used for the junction void fraction, however, it uses the sine of the
angle. It is given by

αg j,
*

αg j,
* wj αg K,• 1 wj–( ) αg L,•+=

x1
2 3 2x1–( )

jm 0.465+
0.93

------------------------

α· g j, vg j, α· f j, vf j,+

Gj α· g j, ρ· g j, vg j, α· f j, ρ· f j, vf j,+=

αg j,
*
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sin φj  =  wj sin φK + (1 - wj)sin φL . (3.3-41)

The vertical flow regime map is for junctions whose junction inclination (vertical) angle φj is such

that 60 < |φj| < 90 degrees. The horizontal flow regime map is for junctions whose junction inclination

(vertical) angle φj is such that 0 < |φj| < 30 degrees. An interpolation region between vertical and horizontal

flow regimes is used for junctions whose junction inclination (vertical) angle φj is such that 30 < |φj| < 60

degrees. This interpolation region is used to smoothly change between vertical and horizontal flow
regimes.

3.3.6  Interphase Friction

The interface friction per unit volume in the phasic momentum equations [Equations (3.1-6) and
(3.1-7)] is expressed in terms of phasic interfacial friction coefficients as

Fig  =  αgρgFIG (vg - vf) (3.3-42)

and 

Fif  =  αfρf FIF (vg - vf) (3.3-43)

where Fig is the magnitude of the interfacial friction force per unit volume on the vapor/gas and Fif is the

magnitude of the interfacial friction force per unit volume on the liquid. The magnitude of the interfacial
friction force per unit volume on the liquid is assumed to be equal to the magnitude of the interfacial
friction on the vapor/gas phase. This assumption leads to the condition [Equation (3.1-10)]

αgρgFIG = αfρfFIF = αgρgαfρfFI (3.3-44)

where a global interfacial friction coefficient FI is defined in terms of the phasic interfacial friction
coefficients (FIG and FIF).

The interfacial friction force term in the difference momentum equation [Equation (3.1-74)] is given
by 

(3.3-45)

which becomes 

Fig

αgρg
-----------

Fif

αfρf
----------+ FIG FIF+( ) vg vf–( )=
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(3.3-46)

where the phasic interfacial friction coefficients (FIG and FIF) are represented in terms of the global
interfacial friction coefficient FI using Equation (3.3-44). This relation can be rearranged to give a
constitutive relation for the global interfacial friction coefficient, which is given by

. (3.3-47)

Once the phasic interfacial friction forces per unit volume (Fig and Fif) have been computed, the global

interfacial friction coefficient FI can be determined.

ATHENA uses two different models for the phasic interfacial friction force computation, the drift
flux method and the drag coefficient method. The basis of each of these methods will be described in the
following sections. Once the two methods have been explained, the final form of the difference momentum
equation incorporating a framework within which both methods have been implemented will be presented.
Finally, the drift flux and drag coefficient correlations used in the several flow regimes will be presented. 

3.3.6.1  Drift Flux Method. The drift flux approach is used in the bubbly and slug flow regimes for
vertical flow. The drift flux model specifies the distribution coefficient and the vapor/gas drift velocity.
These two quantities must be converted into a constitutive relation for the interfacial frictional force per
unit volume. The objective of this conversion is to compute the global interfacial friction coefficient FI,
which leads to a relative velocity consistent with the relative velocity computed directly from the drift flux
parameters, when used in the phasic momentum equations in conjunction with the other force terms such
as the wall friction and buoyancy force terms. This conversion is accomplished in two steps. The first step
considers the effect of the phasic wall frictional force per unit volume on the relative velocity between the
phases, and the second step computes the interfacial friction force per unit volume from the drift flux
parameters.

The first step begins by writing the steady-state phasic momentum equations in symbolic form and
neglecting the virtual mass force and the momentum flux terms. The simplified equations are

(3.3-48)

If we multiply the first equation by αf and the second by αg and subtract the second equation from

the first, the pressure gradient term is eliminated. The resulting equation can be rearranged to give

Fig

αgρg
-----------

Fif

αfρf
----------+ ρmFI vg vf–( )=

FI

Fig

αgρg
-----------

Fif

αfρf
----------+ 

 

ρm vg vf–( )
----------------------------------=

0  αg xd
dP  Fig––   Fwg–   αg– ρgg=

0 αf xd
dP– Fif  Fwf –  αf– ρfg  .+=
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αfFig + αgFif = αfαg (ρf - ρg) g - αfFwg + αgFwf (3.3-49)

which can be simplified by remembering that the magnitudes of the interfacial force per unit volume on the
two phases are equal to give

Fi = αfαg (ρf - ρg) g - αfFwg + αgFwf (3.3-50)

where

Fig  =  Fif  =  Fi.

Equation (3.3-50) states that the interfacial frictional force per unit volume is balanced by buoyancy
and wall friction forces per unit volume. Equation (3.3-50) could be used directly to compute the
interfacial friction force coefficient FI. However, there are several problems with Equation (3.3-50) as it
stands. First, the interfacial friction force Fi might have a negative value at high void fraction and high

flow rates where the magnitude of the wall frictional force is high and where most of the wall frictional

force acts on the vapor/gas phase. The factor αfFwg may be larger than the sum of the buoyance force term

and the fraction of the wall force which acts on the liquid phase, leading to a negative value for the
interfacial force. A negative value for the interfacial force violates the assumption that interfacial friction is
a retarding force tending to decrease the relative velocity between the phases. The second problem with
Equation (3.3-50) is that it implies the interfacial force coefficient is a function of the magnitude of the
individual phasic flow rates (through the phasic wall friction) rather than a function of the relative velocity
between the phases. Experimental evidence shows that the drift flux parameters, and hence the interfacial
friction coefficient, do not depend upon the magnitude of the phasic flow rates, being constant in a given
flow regime. Finally, consider the case of a very large tank for which the wall friction is negligible. In this
case, the interfacial friction force is balanced by only the buoyance force. For these reasons, we remove the
wall friction terms from Equation (3.3-50) before proceeding. This can be accomplished by partitioning the
total wall frictional force per unit volume between the phases based on the phasic volume fractions (also

see Anderson3.3-21 and Ishii3.3-22, 3.3-23) rather than by the use of the Chisholm model (see Section 3.3.8).
That is, we want,

(3.3-51)

where Fwt is the total wall frictional force per unit volume on the two-phase mixture.

Substitution of Equation (3.3-51) into Equation (3.3-50) gives

Fi = αfαg (ρf - ρg) g (3.3-52)

Fwg αgFwt=

Fwf αfFwt=
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where the interfacial frictional force per unit volume is balanced by the buoyancy force per unit volume.
Recalling that the total wall frictional force on the two-phase mixture is given by

Fwt = αfρf FWF vf + αgρgFWG vg, (3.3-53)

the desired wall frictional force per unit volume on the phases is given by

Fwf = αf(αfρfFWF vf + αgρgFWG vg)

Fwg = αg(αfρfFWF vf + αgρgFWG vg) . (3.3-54)

Comparing these phasic wall frictional terms to the wall friction terms already included in the phasic
momentum equations shows that additional terms must be added to the right hand side of the phasic
momentum equations to effect the changing of the partitioning of the wall frictional force per unit volume.
These extra terms are

αgαfρfFWF vf - αfαgρgFWG vg (3.3-55)

for the liquid momentum equation and 

- αgαfρfFWF vf + αfαgρgFWG vg (3.3-56)

for the vapor/gas momentum equation. These terms can be simplified by defining

(3.3-57)

so that the extra terms in the liquid momentum equations can be written as

fwf vf - fwg vg (3.3-58)

and for the vapor/gas momentum equations as

fwg vg - fwf vf . (3.3-59)

A means of removing the extra terms when the interfacial frictional force per unit volume model is
not being determined from the drift flux correlations has been implemented by multiplying the extra terms
by a parameter fx which is defined as fx = 1 when the drift flux model is being used to determine the

fwg αfαgρgFWG=

fwf αgαfρfFWF=
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interfacial friction force per unit volume and is defined as fx = 0 when the drag coefficient model is being

used to determine the interfacial friction force per unit volume. This parameter is interpolated from one to
zero in the interpolation region between flow regimes using the drift flux model and those using the
two-fluid model for the determination of the interfacial friction force per unit volume. 

The second step is next described. The interfacial friction force per unit volume relation specified by
Equation (3.3-52) does not constitute a constitutive relation for the interfacial friction force per unit
volume since it does not provide a relationship between the friction interfacial force per unit volume and
the relative velocity. Such a relation can be found by assuming that the interfacial friction force per unit
volume is given by

Fi = Ci |vR|vR (3.3-60)

where Ci is a unknown coefficient and vR is the relative velocity between the phases. Within the context of

the drift flux model, the relative velocity between the phases in not the difference between the phasic
velocities but is a weighted difference between the phase velocities given by

vR = C1vg - C0vf (3.3-61)

where C0 is given by the drift flux correlations and C1 is given by

. (3.3-62)

Substituting these relations into Equation (3.3-60) gives the interfacial friction force per unit volume
in terms of the phasic velocities, given by

(3.3-63)

with the coefficient Ci undetermined as yet. The drift flux model also specifies that the relative velocity vR

can be written as the ratio of the vapor/gas drift velocity and the liquid volume fraction, and is given by

(3.3-64)

where the vapor/gas drift velocity vgj is given by the drift flux correlations. Substituting this value of the

relative velocity into Equation (3.3-60) and combining the resulting equation with Equation (3.3-52)
allows the coefficient Ci to be determined from

C1
1 αgC0–

1 αg–
---------------------=

Fi Ci C1vg C0vf– C1vg C0vf–( )=

vR
vgj

αf
------=
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. (3.3-65)

We are now in a position to determine the global interfacial friction coefficient FI by modifying
Equation (3.3-47) to take into account the different definition of the relative velocity in the drift flux
model,

(3.3-66)

and by modifying the definition of the relative velocity in the interfacial friction term in the difference
momentum equation accordingly. The interfacial friction force per unit volume Fi is computed from

Equation (3.3-63) from which the global interfacial friction coefficient FI can be computed using Equation
(3.3-66), using the relation Fig = Fif = Fi.

3.3.6.2  Drag Coefficient Method. The drag coefficient method is used in all flow regimes
except for bubbly and slug flows in vertical components. The model uses correlations for drag coefficients
and for the computation of the interfacial area density and is the model used by previous versions of
ATHENA for all flow regimes. 

The constitutive relation for the frictional force on a body moving relative to a fluid is given by

(3.3-67)

where 

F = drag force

ρ = fluid density

v = velocity of body relative to the fluid

CD = drag coefficient

A = projected area of the body.

Expressing the frictional force for a group of bodies moving relative to a fluid (e.g., bubbles moving
through liquid or droplets moving through vapor/gas) in terms of the frictional force for each body leads to
the following constitutive relation for the interfacial frictional force per unit volume:

Ci
αgαf

3 ρf ρg–( )g
vgj

2
-------------------------------------=

FI

Fig

αgρg
-----------

Fif

αfρf
----------+ 

 

ρm C1vg C0vf–( )
----------------------------------------=

F 1
2
---ρv2CDA=
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(3.3-68)

where

Fi = interfacial friction force per unit volume

Ci =

ρc = density of continuous phase

agf = interfacial area per unit volume

SF = shape factor.

The additional factor of 1/4 comes from the conversion of the projected area of spherical particles

(i.e., πr2) into the interfacial area (i.e., 4πr2) and the shape factor is included to account for non-spherical
particles. The drag coefficient model for the global interfacial friction coefficient has been reduced to the
specification of the continuous density, drag coefficient, interfacial area density, and shape factor for the
several flow regimes. Once these quantities have been computed, the interfacial friction force per unit
volume Fi is computed from Equation (3.3-68) from which the global interfacial friction coefficient FI can

be computed using Equation (3.3-47), using the relation Fig = Fif = Fi.

3.3.6.3  Difference Momentum Equation. The finite difference form of the one dimensional
difference momentum equation for the semi-implicit solution scheme [Equation (3.1-105)] must be
modified to incorporate a framework under which the additional wall friction terms which appear when the
drift flux model is used for the computation of the interfacial friction force can be included as well as
accommodate the drift flux definition of the relative velocity. This framework uses a parameter fx which is

used to select either the drift flux model or the drag coefficient model for the interfacial friction force. The
value of this parameter is selected on the basis of the flow regime in a junction. The drift flux model is used
for bubbly and slug flows in vertical components, and the drag coefficient model is used for all other flow
regimes. The finite difference form of the difference momentum equation becomes

Fi
1
8
---ρc vg vf– vg vf–( )CDSFagf Ci vg vf– vg vf–( )= =

1
8
---ρcCDSFagf
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(3.3-69)

3.3.6.4  Dispersed Flow. The bubbly, mist, mist pre-CHF, and mist post-CHF flow regimes are
considered as dispersed flow. For vertical bubbly flow, the drift flux model is used for which fx = 1. For

non-vertical bubbly flow and all droplet (mist, mist pre-CHF, mist post-CHF) flow situations, the drag
coefficient model is used for which fx = 0.

The drag coefficient model will first be discussed. According to Wallis3.3-24 and Shapiro,3.3-25 the
dispersed bubbles or droplets can be assumed to be spherical particles with a size distribution of the

Nukiyama-Tanasawa3.3-24 form. The Nukiyama-Tanasawa distribution function in nondimensional form is

(3.3-70)

where  is the most probable particle diameter, and p* is the probability of particles with

nondimensional diameter d*. With this distribution, it can be shown that the average particle diameter do =

1.5 d’, and the surface area per unit volume is

(3.3-71)

1 Cρm
2

ρgρf
----------+ 

 
j

n

vg
n 1+ vg

n–( ) vf
n 1+ vf

n–( )–[ ]j xj∆

1
2
---+

α· gρ· g
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----------- 
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j
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where α = αg for bubbles and α = αf for droplets. In terms of the average diameter, do, the interfacial area

per unit volume, agf, is

. (3.3-72)

The average diameter do is obtained by assuming that do = (1/2)dmax. The maximum diameter, dmax,

is related to the critical Weber number, We, by

(3.3-73)

where σ is the surface tension. The values for We are presently taken as We = 10.0 for bubbly flow, We =
3.0 for mist-pre-CHF flow, and We = 12.0 for mist and mist-post-CHF flow.

The drag coefficient to be used in non-vertical bubbly flow and all droplet flow situations is given by

Ishii and Chawla3.3-7 for the viscous regime as

(3.3-74)

where the particle Reynolds number, Rep, is defined as

. (3.3-75)

The density, ρc, is for the continuous phase, and is given by ρf for bubbles and ρg for drops. The

mixture viscosity, µm, is for the continuous phase, and is given by  for bubbles and

 for mist pre-CHF. For mist and mist post-CHF droplets,  is used. 

For vertical bubbly flow, the drift flux model is used for which fx = 1. The drift flux parameters are

calculated using drift flux correlations from the literature based on Putney’s

agf
3.6α

do
-----------=

We dmaxρc vg vf–( )2

σ
--------------------------------------=

CD
24 1.0 0.1Rep

0.75+( )
Rep

----------------------------------------------=

Rep
vg vf– doρc

µm
-----------------------------=

µm
µf

αf
-----=

µm
µg

αg( )2.5
---------------= µm µg=
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work.3.3-26,3.3-27,3.3-28,3.3-29,3.3-30 Table 3.3-2 indicates  which correlations are used for different

geometry and flow conditions. The number in parenthesis is the value of the minor edit/plot variable
IREGJ, the vertical bubbly/slug flow junction flow regime number. The name in parenthesis is the
subroutine used to calculate the correlation. It should be noted that the EPRI correlation implemention has
some differences between bundles and pipes; this is discussed in Volume IV.

The correlation labeled EPRI is by Chexal and Lellouche.3.3-31 The correlation has been recently

modified3.3-32,3.3-33 and many of the changes have been incorporated into ATHENA. The distribution
coefficient C0 is calculated from

Table 3.3-2 Drift flux void fraction correlations for vertical bubbly-slug flow.

Flow rates Rod bundles Narrow 
rectangular 

channels

Small pipes
D < 0.018m

Intermediate 
pipes

0.018m < D < 
0.08m

Large pipes
0.08m < D

High upflow rates
G > 100

kg/m2•s

EPRI (2)
(eprij)

Griffith (2) 
(griftj)

EPRI (3)
(eprij)

EPRI (9)
(eprij)

Churn-turbulent
bubbly flow 

(14)
Transition (15)
Kataoka-Ishii 
(16) (katokj)

Medium upflow 
rates

50 kg/m2•s < G < 

100 kg/m2•s

Transitiona (5)

a. Interpolation is applied between different flow rates in pipes.

Transitiona (13)

Low upflow, 
downflow, and 

countercurrent flow 
rates

- 50 kg/m2•s < G < 

50 kg/m2•s

Zuber-Findlay
slug flow (4)

(zfslgj)

Churn-turbulent
bubbly flow 

(10)
Transition (11)
Kataoka-Ishii 
(12) (katokj)

Medium downflow 
rates

- 100 kg/m2•s < G 

< - 50 kg/m2•s

Transitiona (5) Transitiona (13)

High downflow 
rates

G < -100 kg/m2•s

EPRI (3)
(eprij)

EPRI (9)
(eprij)
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(3.3-76)

where

L(αg,P) = (3.3-77)

C1 = (3.3-78)

Pcrit = critical pressure

K0 = (3.3-79)

B1 = min (0.8, A1) (3.3-80)

A1 = (3.3-81)

Re = Reg           if Reg > Ref or Reg < 0 (3.3-82)

= Ref           otherwise (3.3-83)

Ref = local liquid superficial Reynolds number

= (3.3-84)

Reg = local vapor/gas superficial Reynolds number

= (3.3-85)

r = . (3.3-86)

C0
L αg P,( )

K0 1 K0–( )αg
r+

----------------------------------------=

1 exp C1αg–( )–
1 exp C1–( )–

---------------------------------------

4Pcrit
2

P Pcrit P–( )
---------------------------

B1 1 B1–( )
ρg

ρf
----- 

  1 4⁄
+

1

1 exp  Re
60 000,
------------------ 

 –+

-----------------------------------------------------

ρfjfDh

µf
---------------

ρgjgDh

µg
----------------

1 1.57 ρg

ρf
----- 

 +

1 B1–
-------------------------------
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The sign of jk is positive if phase k flows upwards and negative if it flows downwards. This

convention determines the sign of Reg, Ref, and Re.

The vapor/gas drift velocity, vgj, for the Chexal-Lellouche correlation is calculated from

(3.3-87)

where

C1 =       if Reg > 0 (3.3-88)

= (1 - αg)0.5            if Reg < 0. (3.3-89)

C2 = 1      if  and C5 > 1 (3.3-90)

= 1      if  and C5 < 1 and C6 > 85 (3.3-91)

=       if  and C5 < 1 and C6 < 85 (3.3-92)

=       if (3.3-93)

C5 = (3.3-94)

C6 = (3.3-95)

C4 = 1      if C7 > 1 (3.3-96)

=              if C7 < 1 (3.3-97)

C7 = (3.3-98)

vgj 1.41 ρf ρg–( )σg
ρf

2
----------------------------

1 4⁄
C1C2C3C4=

1 αg–( )
B1

ρf

ρg
----- 18≥

ρf

ρg
----- 18≥

1
1 exp C6–( )–
--------------------------------

ρf

ρg
----- 18≥

0.4757 ρf

ρg
----- 

 ln
0.7 ρf

ρg
----- 18<

150 ρg

ρf
----- 

  1 2⁄

C5

1 C5–
---------------

1
1 exp C8–( )–
--------------------------------

D2

D
------ 

 
0.6
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D2 = 0.09144 m (normalizing diameter)

C8 = (3.3-99)

The parameter C3 depends on the directions of the vapor/gas and liquid flows:

Upflow (both jg and jf are positive)

. (3.3-100)

Downflow (both jg and jf are negative)

(3.3-101)

(3.3-102)

(3.3-103)

D1 = 0.0381 m (normalizing diameter). (3.3-104)

Countercurrent Flow (jg is positive, jf is negative)

(3.3-105)

(3.3-106)

(3.3-107)

C7

1 C7–
---------------

C3 max 0.50 2  Ref

300 000,
---------------------– 

 exp,=

C3
C10

2
-------- 

  2B

=

B2
1

1 0.05 Ref

350 000,
---------------------

0.4
+

-------------------------------------------------=

C10 2exp Ref

350 000,
--------------------- 

 
0.4

1.7 Ref
0.035exp Ref–

60 000,
------------------

D1

D
------ 

 
2

–
D1

D
------ 

 
0.1

Ref
0.001+=

C3
C10

2
-------- 

  2B

=

B2
1

1 0.05 Ref

350,000
-------------------

0.4
+

-----------------------------------------------=

C10 2exp Ref

350 000,
--------------------- 

 
0.4

1.7 Ref
0.035exp Ref–

60 000,
------------------

D1

D
------ 

 
2

–
D1

D
------ 

 
0.1

Ref
0.001+=
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D1 = 0.0381 (normalizing diameter). (3.3-108)

The parameters C1, C2, C3, C4, ..., C10 are from the Chexal-Lellouche correlation.3.3-31, 3.3-32,3.3-33

The correlation labelled Griffith is for vertical narrow rectangular channels. The distribution

parameter is given by Ishii3.3-23

(3.3-109)

and the drift velocity is given by Griffith3.3-34

(3.3-110)

where W is the channel width (pitch, gap, short dimension) perpendicular to the flow and S is the channel
length (span, long dimension) perperdicular to the flow.

The correlation labeled Zuber-Findlay Slug Flow is by Zuber and Findlay.3.3-35,3.3-36 The
distribution parameter is given by

C0  =  1.2 (3.3-111)

and the drift velocity is given by

. (3.3-112)

The correlation labeled Kataoka-Ishii is by Kataoka and Ishii.3.3-37 The distribution parameter is

given by the modified Rouhani correlation3.3-38 used in TRAC-BF1,3.3-3 that is

(3.3-113)

(3.3-114)

C0 1.35 0.35 ρg

ρf
-----–=

vgj 0.23 0.13W
S
-----+ 

  ρf ρg–( )gS
ρf

---------------------------- 
  1 2⁄

=

vgj 0.35 ρf ρg–( )gD
ρf

-----------------------------
1 2⁄

=

C0 C∞ C∞ 1–( )
ρg

ρf
----- 

  1 2⁄
–=

C∞ 1 0.2 ρf gD( )1 2⁄

G 0.001+
---------------------------

1 2⁄

+=
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and the drift velocity is given by

 for D* < 30 (3.3-115)

 for D* > 30 (3.3-116)

where D* is the Bond number given by Equation (3.3-6) and the viscosity number, Nµf, is given by

. (3.3-117)

The correlation labeled Churn Turbulent Bubbly Flow is by Zuber and Findlay.3.3-35,3.3-36 The

distribution parameter is given by the modified Rouhani correlation3.3-38 used in TRAC-BF1,3.3-3

Equations (3.3-113) and (3.3-114), and the drift velocity is given by

. (3.3-118)

For intermediate pipes (for low upflow, downflow, and countercurrent flow rates) and large pipes (all
cases), the churn turbulent bubbly flow correlation is applied when 

.

The Kataoka-Ishii correlation is applied when

(3.3-119)

where  = 2.5. Linear interpolation is used between the two correlations.

vgj 0.0019 D*( )
0.809 ρg

ρf
----- 

  0.157–

Nµf
0.562– σg ρf ρg–( )

ρf
2

----------------------------
1 4⁄

=

vgj 0.030 ρg

ρf
----- 

  0.157–

Nµf
0.562– σg ρf ρg–( )

ρf
2

----------------------------
1 4⁄

=

Nµf
µf

ρfσ
σ

g ρf ρg–( )
------------------------

1 2⁄

 
 
 1 2⁄
-----------------------------------------------------------=

vgj 1.41 σg ρf ρg–( )

ρf
2

----------------------------
1 4⁄

=

jg
+ jg

σg ρf ρg–( )

ρf
2

----------------------------

1
4
---

------------------------------------   jg1
+≤ 0.5= =

jg
+  ≥ jg2

+

jg2
+
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Putney has also placed a countercurrent flow limitation (CCFL) on the drift flux parameters. The
limitation is based on the Kutateladze condition (see Section 3.4.7), that is

(3.3-120)

where

Kug = (3.3-121)

Kuf = (3.3-122)

m = 1 (3.3-123)

and Kucrit (using linear interpolation) is given by Table 3.3-3. This table for Kucrit as a function of D* is

from Wallis and Makkenchery.3.3-39 This has been used successfully in the RELAP-UK code.3.3-40 The
value of m = 1 was also used in the RELAP-UK code.

On the flooding curve, the drift flux parameters satisfy the relationship

Table 3.3-3 Values of Kucrit.

D* Kucrit

< 2 0

4 1.0

10 2.1

14 2.5

20 2.8

28 3.0

> 50 3.2

Kug
1 2⁄ m Kuf

1 2⁄+ Kucrit
1 2⁄=

αgvgρg

1
2
---

σg ρf ρg–( )[ ]
1
4
---

-----------------------------------

αfvfρf

1
2
---

σg ρf ρg–( )[ ]
1
4
---

-----------------------------------
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. (3.3-124)

This flooding limit for vgj is applied for mass fluxes (G) larger than 100 kg/m2•s and for αg > 0.5.

Linear interpolation is used down to a mass flux of 50 kg/m2•s and to αg = 0.3, at which point the normal

drift flux correlations are used.

3.3.6.5  Slug Flow. For vertical slug flow, the drift flux model is used. For non-vertical slug flow,
the drag coefficient model is used.

The drag coefficient model will first be discussed. Slug flow for non-vertical geometry is modeled as
a series of Taylor bubbles separated by liquid slugs containing small bubbles. A sketch of a slug flow

pattern is shown in Figure 3.3-5. The Taylor bubble has a diameter nearly equal to the pipe diameter and a
length varying from 1 to 100 pipe diameters. 

Let αgs be the average void fraction in the liquid film and slug region. The void fraction of a single

Taylor bubble, αb, in the total mixture is then

Figure 3.3-5 Slug flow pattern.

vgj

1 αgC0–( )C0Kucrit
ρf ρg–( )gσ

ρf
2

----------------------------
1 4⁄

αgC0
ρg

ρf
----- 

  1 2⁄
m2 1 αgC0–( )+

----------------------------------------------------------------------------------------=

Overall average
void fraction - αg

αgs
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. (3.3-125)

The Taylor bubble frontal area per unit volume is , where L is the cell length. Consequently, the

interfacial area per unit volume, agf, for slug flow is

. (3.3-126)

To provide a smooth transition into and out of slug flow, αgs in Equation (3.3-125) is considered as a

free parameter varying from αBS at the bubbly-to-slug flow regime transition to nearly zero at the

slug-to-annular-mist flow regime transition. The variation is represented by the exponential expression

. (3.3-127)

The drag coefficient for Taylor bubbles in non-vertical slug flow is given by Ishii and Chawla3.3-7 as

(3.3-128)

where D’ is the Taylor bubble diameter and αb is given by combining Equations (3.3-125) and (3.3-127).

The drag coefficient for small bubbles in non-vertical slug flow is given by Ishii and Chawla3.3-7 by
Equation (3.3-74).

For vertical slug flow, the interphase drag and shear terms are calculated using the same drift flux
correlations that are used in vertical bubbly flow.

3.3.6.6  Annular-Mist Flow. Annular-mist flow is characterized by a liquid film along the wall
and a vapor/gas core containing entrained liquid droplets. Let αff be the average liquid volume fraction of

the liquid film along the wall. Then, from simple geometric considerations, the interfacial area per unit
volume can be shown to be

(3.3-129)

αb
αg αgs–
1 αgs–
-------------------=

αb

L
-----

agf
αb

L
-----

3.6αgs

do
--------------- 

  1 αb–( )+=

αgs αBS 8 αg αBS–
αSA αBS–
------------------------ 

 –exp=

CD 10.9 D′
D
------ 

  1 αb–( )3=

agf
4Cann

D
------------- 

  1 αff–( )1 2⁄ 3.6αfd

do
--------------- 

  1 αff–( )+=
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where Cann is a roughness parameter introduced to account for waves in the liquid wall film, αfd is the

average liquid volume fraction in the vapor/gas core, for which

(3.3-130)

and do is the average diameter of the drops. For an annulus component, all the liquid is in the film and there

are no drops. Thus, αff = αf and αfd = 0 are used for an annulus. This was necessary to get downcomer

penetration following a cold leg break. This is discussed more in Volume IV.

A simple relation based on the flow regime transition criterion and liquid Reynolds number is used to
correlate the average liquid film volume fraction. For vertical flow regimes, the entrainment relation is

(3.3-131)

where uc is the critical entrainment superficial velocity given by the combination of Equations (3.3-13) and

(3.3-15). 

For horizontal flow regimes, the entrainment relation is

(3.3-132)

where vgL is the horizontal stratification critical velocity given by Equation (3.3-29). The term Cf is

expressed as

. (3.3-133)

The interfacial friction factor, fi, for the liquid film takes the place of CD in Equation (3.3-68), and is

described by a standard correlation in the laminar region and is based on Wallis’ correlation in the

turbulent region.3.3-24 In the turbulent region, the Wallis correlation was modified to use the factor 0.02

rather than 0.005. This is the value used in RELAP5/MOD1,3.3-41 and it was selected because of the
RELAP5/MOD3 assessment (see Volume IV of the manual for details). It is based on the vapor/gas
Reynolds number defined as 

αfd
αf αff–
1 αff–
------------------=

αff αfCf 7.5 5–×10
αgvg

uc
----------- 

  6
–exp=

αff αfCf 4.0 5–×10
vg vf–

vgL
------------------ 

  6
–exp=

Cf 1.0 10 4– αfρf vf
D
µf
---- 

  0.25
–=
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(3.3-134)

where

Dg =  is the equivalent wetted diameter (3.3-135)

µg = viscosity of the vapor/gas phase. (3.3-136)

The values of fi are

fi =          for Reg < 500

= ,

for 500 < Reg < 1,500

= 0.02 {1 + 150 [1- (1 - αff)
1/2]} for           Reg > 1,500. (3.3-137)

The interfacial drag coefficient CD for the drops is given by Ishii and Chawla3.3-7 from Equation

(3.3-74).

For bundles in vertical annular-mist flow or in vertical slug/annular-mist transition flow, a maximum
of the interphase drag coefficient from the EPRI drift flux correlation (bubbly-slug flow) and the
interphase drag coefficient from annular-mist flow (friction factor/drag coefficient previously discussed).
This was necessary to remove inaccurate low void predictions in rod bundles. This is discussed more in
Volume IV.

For an annulus component and a multid component (no drops option), all the liquid is in the film (i.e.,
no drops) when in the annular mist flow regime.

3.3.6.7  Vertical Stratified Flow. For the junction above the vertically stratified volume (junction
j in Figure 3.3-6), the interphase drag is based on the void fraction in the volume above (volume L). This

is consistent with the junction-based interphase drag. This is obtained as follows: The void fraction 

used in the junction j for the junction-based interphase drag is given by 

(3.3-138)

Reg
ρg vg vf– Dg

µg
-------------------------------=

αg
1 2⁄ D

64
Reg
---------

1 500, Reg–
1 000,

------------------------------ 
  64

Reg
---------

Reg 500–
1 000,

------------------------ 
  0.02 1 150 1 1 αff–( )1 2⁄–[ ]+{ }+

αg j,
*

αg j,
* wj αg K,

* 1 wj–( ) αg L,•+•=
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and is similar to Equation (3.3-34) except that αg,K is replaced by . This void fraction is given by

(3.3-139)

where strat takes on values from 0 to 1. For a vertically stratified volume, strat = 1,  and

. For a non-vertically stratified volume, strat = 0, , and  is given by Equation

(3.3-34). The smoothing parameter strat is given by

strat  =  strat1 • strat2 (3.3-140)

where

(3.3-141)

. (3.3-142)

Both strat1 and strat2 are limited to values between 0 and 1. Equation (3.3-141) for strat1 is a
modification of the approach used in RELAP5/MOD2. The variable strat1 exponentially turns off the

stratification effect when the volume above (volume L) becomes empty of liquid. When αf,L = 0.01, strat1

Figure 3.3-6 Three vertical volumes with the middle volume being vertically stratified.

I

L

j

j-1

K

αg K,
*

αg K,
* strat αg L, 1 strat–( ) αg K,•+•=

αg K,
* αg L,=

αg j,
* αg L,= αg K,

* αg K,= αg j,
*

strat1 1 e
0.5αf L,–

–=

strat2 2 1 vm

vTb
-------– 

 =
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= 0.005. For strat2, the variables vm and vTb are the mixture velocity based on the volume centered

velocities and Taylor bubble rise velocity given by Equation (3.3-5).

A different method is used at junction j-1 below the vertically stratified volume. Equations (3.3-138),
(3.3-139), (3.3-140), and (3.3-142) are used, however, strat1 is given by

strat1 = 20 (αlevel - 0.05) (3.3-143)

where

αlevel = . (3.3-144)

The variable αlevel is an implied non-dimensional mixture level position within volume K. The

coding is generalized to handle the case where the volumes and junctions are oriented downward. The
vertical stratification model is not intended to be a mixture level model, and a more mechanistic level
tracking model is described in Section 3.4.8. 

If more than one junction is connected to the top, the volume above with the smallest void fraction
will be treated as the “above volume;” if more than one junction is connected to the bottom, the volume
below with the largest void fraction will be treated as the “below volume.”

3.3.6.8  Horizontal Stratified Flow. By simple geometric consideration, one can show that the
interfacial area per unit volume is

(3.3-145)

where Cst is a roughness parameter introduced to account for surface waves and is set to 1 at the present

time. (See Figure 3.1-2 for the definition of angle θ).

The interface Reynolds number is defined with the vapor/gas properties and regarding liquid as the
continuous phase for which

(3.3-146)

where the equivalent wetted diameter, Di, for the interface is

αg L, αg K,–
αg L, αg I,–
--------------------------

agf 4Cst
θsin

πD
-----------=

Rei
ρg vg vf– Di

µg
------------------------------=
INEEL-EXT-98-00834-V1 3-130



ATHENA/2.3
. (3.3-147)

The interfacial friction factor, fi, replaces CD in Equation (3.3-68) and is obtained by assuming

typical friction factor relationships for which

. (3.3-148)

3.3.6.9  Inverted Flow Regimes. These regimes arise when there is hot vapor/gas in the cell and
either hot walls or the reflood model is on. The interphase drag relationships for post-CHF inverted flow
regimes are treated in a similar fashion to the corresponding pre-CHF flow regimes, except that the roles of
vapor/gas and liquid are interchanged.

3.3.6.9.1  Inverted Annular Flow--Immediately downstream of a quench front or CHF
position, there may be an inverted annular flow region if the combination of liquid flow and subcooling are
high enough. The physical concept in the model is the presence of vapor/gas bubbles in the liquid core (just
as there are liquid drops in the vapor/gas core region for annular-mist flow) and an annular vapor/gas layer
between the walls and the core. The drag term [fgf in Equation (3.3-68)] is the sum of the drag between the

bubbles and the liquid in the core and the drag between the vapor/gas annulus and the outer surface of the
core.

The drag coefficient for the bubbles is the Ishii-Chawla correlation given by Equation (3.3-74), and
the interfacial area is

(3.3-149)

where

αgb = the vapor/gas void fraction in the liquid core

do = the bubble diameter

αB = the fraction of the total area occupied by the vapor/gas annulus.

The Weber number used to solve for the bubble diameter is 10. The annulus vapor/gas void fraction
is an exponential function of the total vapor/gas void fraction, similar to Equation (3.3-127), and is
presented in Volume IV of the ATHENA manuals. The core vapor/gas void fraction is

Di
αgπD

θ θsin+
--------------------=

fi max 64
Rei
--------  , 0.3164

Rei
0.25

---------------- 
 =

αgf
3.6αgb

do
--------------- 1 αB–( )=
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(3.3-150)

where

Vcore = volume of the liquid core including bubbles

Vtot = volume of control volume.

The annular shear force uses the Bharathan et al.3.3-42 equation for the drag coefficient

CD  =  4[0.005 + A(δ*)B] (3.3-151)

where

log10 A = (3.3-152)

B = (3.3-153)

δ* = . (3.3-154)

The term δ* is the liquid wall film Deryagin number for which δ is the film thickness, and D* is the

dimensionless diameter Bond number given by Equation (3.3-6). The film thickness δ is defined in
Volume IV.

The interfacial area of the vapor/gas annular film per unit length in a pipe is

(3.3-155)

where

= inner diameter of annulus

D = diameter of pipe.

αgb
Vgas core,

Vcore
-------------------

Vgas tot, Vgas ann,–
Vtot Vgas ann,–

-----------------------------------------
αg αB–
1 αB–
------------------= = =

0.56– 9.07
D*

----------+

1.63 4.74
D*

----------+

δ
ρf ρg–( )g

σ
------------------------

1 2⁄

agf ann,
πD′
π
4
---D2
---------- 4D′

D2
---------= =

D′
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(3.3-156)

where

Vcore = idealized volume of the vapor/gas core per unit length 

Vtot = volume of control volume per unit length.

Solving for the ratio  from Equation (3.3-156) and putting it into Equation (3.3-155) yields

. (3.3-157)

3.3.6.9.2  Inverted Slug Flow--The inverted slug flow regime as envisioned by DeJarlais

and Ishii3.3-43 consists of bubble-impregnated liquid droplets (see Figure 3.3-7). The coded interfacial
friction coefficients recognize the liquid droplets, vapor/gas blanket, and liquid slugs, but not the presence
of bubbles in the slugs. Contributions to the interfacial friction are recognized then, as coming from two
sources: (a) the liquid droplet interfaces in the vapor/gas annulus and (b) the liquid slug/annulus interface.
It is assumed that the liquid slugs are so long that any contributions to interfacial friction at their ends are
negligible. 

Figure 3.3-7 Flow regimes before and after the critical heat flux (CHF) transition.

Vcore

Vtot
------------

π
4
---

π
4
---
---D′2

D2
-------- D′2

D2
-------- 1 αB–= = =

D′
D
------

agf ann,
4
D
---- 1 αB–( )1 2⁄=

Bubbly

Inverted slug Dispersed dropletInverted annular

Annular or 
annular-mist

CHF CHF

Slug
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The interfacial areas for the annulus/droplet portion and the slug/annulus portion are derived

analogously to those for nonvertical slug flow (Section 3.3.6.5). The void fraction of the liquid slug, αB, is

analogous to that for a Taylor bubble, αTb, and the average droplet void fraction in the vapor/gas blanket,

αdrp, is analogous to the average void fraction, αgs, in the liquid annulus for slug flow. That is, the

interfacial areas are computed for inverted slug flow by simply reversing the liquid and vapor/gas phases

from slug flow. The droplet void fraction, αdrp, in the vapor/gas annulus is an expression that exponentially

increases the portion of αf due to droplets as αg increases until the transition void fraction, αSA, is reached,

at which point all of the liquid is appropriately assumed to be in droplet form. The value for the Weber
number used is 12.0.

The drag coefficients for the annulus/droplet portion and the slug/annulus portion are analogous to
those for non-vertical slug flow, except that the liquid and vapor/gas phases are reversed.

3.3.6.9.3  Mist Flow--The mist flow regime is discussed in Section 3.3.6.4, Dispersed Flow.

For mist pre-CHF, We = 3.0 and ; for mist and mist post-CHF, We = 12.0 and µm = µg.

3.3.7  Coefficient of Virtual Mass

The coefficient of virtual mass is determined based on the junction flow regime map. The calculation
of the drag due to the virtual mass effect (dynamic drag) is based on an objective and symmetric

formulation of the relative acceleration.3.3-44 The inertial drag force per unit volume in the phasic
momentum equations is written as

(3.3-158)

where

ρ = αgρg + (1 - αg)ρf (3.3-159)

FAgf = force per unit volume due to dynamic drag.

The factor, Cαg(1 - αg)ρ, is chosen to ensure a smooth transition between αg = 0 and αg = 1.0. This

factor also gives the proper limit, Cαgρf in the thinly dispersed bubbly flow, and C(1 - αg)ρg in the

dispersed droplet flow. The virtual mass coefficient, C, is given3.3-45 as

 for 0 < αg < 1/2 (3.3-160)

µm
µg

αg( )2.5
---------------=

FAgf  Cαg 1 αg–( )ρ ∂
∂t
---- vg vf–( )–=

C 1
2
---

1 2αg+( )
1 αg–( )

-----------------------=
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 for 1/2 < αg < 1 . (3.3-161)

It may be appropriate to assume that C = 0 should be used for separated or stratified flow. At present,
the value of C defined by Equations (3.3-160) and (3.3-161) is used without regard to the flow regime.

3.3.8  Wall Friction

The wall friction is determined based on the volume flow regime map. The wall friction force terms
include only wall shear effects. Losses due to abrupt area change are calculated using mechanistic
form-loss models. Other losses due to elbows or complicated flow passage geometry are modeled using
energy-loss coefficients that must be input by the user.

Emphasis was placed on obtaining reasonable values for wall friction in all flow regimes in the
development of the wall friction model. The flow regime models are discussed in Section 3.3.1 through
Section 3.3.4.

The wall friction model is based on a two-phase multiplier approach in which the two-phase
multiplier is calculated from the Heat Transfer and Fluid Flow Service (HTFS)-modified Baroczy

correlation.3.3-46 The individual phasic wall friction components are calculated by apportioning the

two-phase friction between the phases using a technique derived by Chisholm3.3-47 from the

Lockhart-Martinelli3.3-48 model. The partitioning model is based on the assumption that the frictional
pressure drop may be calculated using a quasi-steady form of the momentum equation. As discussed in
Section 3.3.6, this wall friction partitioning model is used with the drag coefficient method of the
interphase friction model. The drift flux method of the interphase friction model uses a wall friction model
that partitions the total wall friction force to the phases based on the phasic volume fraction rather than
using the Chisholm partition model.

3.3.8.1  The Two-Phase Friction Multiplier Approach. The Lockhart-Martinelli model
computes the overall two-phase friction pressure drop in terms of the liquid-alone wall friction pressure
drop, that is

(3.3-162)

or in terms of the vapor/gas-alone wall friction pressure drop, that is

(3.3-163)

C 1
2
---

3 2αg–( )
αg

-----------------------=

dP
dx
------ 

 
2φ

φf
2 dP

dx
------ 

 
f

=

dP
dx
------ 

 
2φ

φg
2 dP

dx
------ 

 
g

=
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where φf and φg are the liquid-alone and vapor/gas-alone two-phase Darcy-Weisbach friction multipliers,

respectively. The phasic wall friction pressure gradients are expressed as

(3.3-164)

for the liquid alone, and

(3.3-165)

for the vapor/gas alone, where the prime indicates the liquid and vapor/gas-alone Darcy-Weisbach friction
factors, respectively, calculated at the respective Reynolds numbers, given by

(3.3-166)

and

. (3.3-167)

The liquid and vapor/gas mass flow rates, respectively, are defined as

Mf  =  αfρfvfA (3.3-168)

and

Mg  =  αgρgvgA . (3.3-169)

Throughout the current literature, the overall two-phase friction pressure gradient is calculated using
two-phase friction multiplier correlations. However, regardless of the correlation used, the multipliers may

be interrelated using Equations (3.3-162) through (3.3-165) and the Lockhart-Martinelli3.3-48 ratio defined
as

dP
dx
------ 

 
f

λf
′ Ref′( )Mf

2

2DρfA
2

----------------------------=

dP
dx
------ 

 
g

λg
′ Reg′( )Mg

2

2DρgA2
-----------------------------=

Ref
′ MfD

µfA
-----------=

Reg
′ MgD

µgA
------------=
INEEL-EXT-98-00834-V1 3-136



ATHENA/2.3
. (3.3-170)

3.3.8.2  The HTFS Two-Phase Friction Multiplier Correlation. The HTFS correlation3.3-46 is
used to calculate the two-phase friction multipliers. This correlation was chosen because it is correlated to
empirical data over very broad ranges of phasic volume fractions, phasic flow rates and phasic flow
regimes. The correlation has also been shown to give good agreement with empirical data.

The HTFS correlation for the two-phase friction multiplier3.3-46 is expressed as

(3.3-171)

for the liquid-alone multiplier, or

(3.3-172)

for the vapor/gas-alone multiplier, where C is the correlation coefficient and  is the Lockhart-Martinelli

ratio given by Equation (3.3-170). The correlation coefficient, C, is expressed in terms of scalar mass flux,

G, and the Baroczy dimensionless property index, Λ, such that

C  =  - 2 + f1 (G) T1 (Λ, G) (3.3-173)

where

f1 (G) = 28 - 0.3 (3.3-174)

T1 (Λ, G) = (3.3-175)

Λ = . (3.3-176)

The terms ρ, µ, α, and v denote the density, viscosity, volume fraction, and velocity, respectively.

χ2

dP
dx
------ 

 
f

dP
dx
------ 

 
g

--------------
φg

2

φf
2

-----= =

φf
2 1 C

χ
---- 1

χ2
-----+ +=

φg
2 χ2 Cχ 1+ +=

χ

G

exp  log10Λ 2.5+( )2

2.4 G 10 4–( )–
-------------------------------------–

ρg

ρf
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µf

µg
----- 
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If the HTFS correlation is combined with the wall friction formulations by combining Equations
(3.3-162) through (3.3-165), (3.3-168) through (3.3-170), and (3.3-172), then

(3.3-177)

3.3.8.3  Partitioning of Wall Friction. Two-phase friction can be modeled in terms of two-phase

friction multipliers and known friction factors using the method developed by Lockhart-Martinelli.3.3-48

Chisholm3.3-47 also developed a theoretical basis for the Lockhart-Martinelli model that provides a
rationale for partitioning the overall wall friction between the phases which is independent of the model for
interfacial friction. As discussed previously, this method is used with the drag coefficient method of the
interphase friction model.

From the theoretical basis developed by Chisholm, the phasic momentum equations can be expressed
in scalar form as

(3.3-178)

for the liquid, and

(3.3-179)

for the vapor/gas, where τf and τg are the liquid and vapor/gas wall shear stresses, respectively, pf and pg

are the liquid and vapor/gas wetted perimeters, respectively, and SFI is a stress gradient due to interphase

friction. Eliminating the overall pressure gradient between these two equations determines the interfacial
friction term in terms of the ratio of the phasic shear stresses and phasic wetted perimeters. The result is

(3.3-180)

where the interphase friction term, SR, is defined as

dP
dx
------ 

 
2φ
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2 dP

dx
------ 
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f
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 
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αgA dP
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 
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1 SR
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1 SR–( )
---------------------------

τfpf

αf
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τgpg

αg
---------- 

 
--------------- Z2= =
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. (3.3-181)

Equation (3.3-180) can be rearranged to give a relation for the interfacial shear stress gradient in
terms of the ratio of the phasic wall shear forces. This relation can then be substituted into the quasi-static
momentum balances to give a relation for the individual phasic wall shear force gradients in terms of the
overall wall friction and the ratio of the phasic wall shear stresses. These are

(3.3-182)

and

. (3.3-183)

These relations are nothing more than a rearrangement of the quasi-static momentum equations and

have only eliminated one unknown, the interfacial shear stress in terms of another unknown, Z2, the ratio
of the phasic wall friction gradients. Chisholm postulated that the liquid wall shear stress could be
determined using the liquid Darcy-Weisbach friction factor computed from the liquid Reynolds number
based on liquid properties as

(3.3-184)

where

λ(Ref) = liquid Darcy friction factor (3.3-185)

Ref = liquid Reynolds number (3.3-186)

= (3.3-187)

Df = liquid hydraulic diameter (3.3-188)

SR
SFI
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τfpf αf
dP
dx
------

2φ

Z2

αg αfZ
2+

-----------------------
 
 
 

=

τgpg αg
dP
dx
------

2φ

1
αg αfZ

2+
----------------------- 

 =

τf
λ Ref( )

4
-----------------

ρfvf
2

2
----------=

ρfvfDf

µf
---------------
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= (3.3-189)

Af = liquid flow area (3.3-190)

= αfA (3.3-191)

pf = liquid wetted perimeter (3.3-192)

= αfwp (3.3-193)

where αfw is the liquid fraction on the wall. The vapor/gas shear stress is defined in an analogous manner

based on vapor/gas properties. Substituting the liquid shear stress from Equation (3.3-184) and the liquid
wetted perimeter from Equation (3.3-193) and the analogous expressions for the vapor/gas friction factor

and wetted perimeter, defines the unknown parameter Z2 by the expression

. (3.3-194)

Substituting Equation (3.3-194) into the relations for the phasic wall friction forces Equations
(3.3-182) and (3.3-183) yields equations which determine the magnitude of the phasic wall friction force in
terms of the overall wall friction force and the ratio of the phasic wall frictional forces, independent of the
formulation for the interfacial shear forces and independent of the particular model for the overall wall
frictional force.

It should be noted that the calculation of the phasic friction factors using the Reynolds numbers
defined above and the assumption that two-phase flows behave similarly to single-phase flows in the
laminar, transition, and turbulent regimes provides the rationale relating Equations (3.3-182) and (3.3-183)

to empirical data. It is this same rationale that allows the correlating term Z2 to be expressed in terms of
friction factors that are independent of interphase friction as given by Equation (3.3-180). It is this equation
that forms the basis for apportioning the overall two-phase wall friction between the phases.

3.3.8.4  ATHENA Wall Friction Coefficients. The ATHENA phasic momentum equations,
Equations (3.1-6) and (3.1-7) can be written in a quasi-static form similar to Equations (3.3-178) and
(3.3-179), except that the wall friction terms are in terms of the ATHENA wall friction coefficients instead
of phasic wall shear stresses. Comparison of these two forms of the momentum equations provides a
definition of the ATHENA phasic wall friction coefficients as

4Af

pf
---------

Z2
λf Ref( )ρfvf

2αfw

αf
--------

λg Reg( )ρgvg
2αgw

αg
--------

----------------------------------------=
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(3.3-195)

and

. (3.3-196)

Taking the sum of these two equations gives the overall quasi-static, two-phase wall friction pressure
gradient as

. (3.3-197)

3.3.8.5  Flow Regime Factors for Phasic Wall Friction. Phasic wall friction is expressed in
terms of wall shear stress, which, in turn, requires knowledge of the surface area wetted by each phase.
From the flow regime model discussed in Section 3.3.1 through Section 3.3.4 expressions for the wall film
phasic volume fractions can be derived. Using these expressions, the phasic wall friction factor that
appears in Equations (3.3-184) may then be computed.

In the flow regime map, eight flow regimes are modeled, which are: for pre-CHF heat transfer, the
bubbly, slug, and annular-mist; for post-CHF heat transfer, the inverted-annular, inverted-slug and mist;
and for stratified flow, the vertically and horizontally stratified. For the transition regime between pre- and
post-CHF heat transfer, an interpolation scheme is also implemented in the code.

To implement flow regime effects in the two-phase wall friction model, first consider the wall liquid
and vapor/gas volume fractions. These terms are 

 = αfw, (3.3-198)

which represents the liquid volume fraction in the wall film, and

 = αgw, (3.3-199)

FWF αfρfvf( )A τfpf αf
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dx
------ 

 
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αg αfZ
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which represents the vapor/gas volume fraction in the wall film, where the terms pf, pg, and p are the

perimeters wetted by the liquid, vapor/gas, and mixture, respectively. Then, from the flow regime model,
these are formulated for all of the flow regimes as follows:

For the bubbly regime,

αfw  =  αf and αgw  =  αg (3.3-200)

where αf, αg are the overall liquid and vapor/gas volume fractions, respectively.

For the slug regime,

αfw  =  1 - αgs and αgw  =  αgs (3.3-201)

where αgs is given by Equation (3.3-127).

For the annular-mist regime,

αfw  =  (αff)
1/4 and αgw  =  1 - (αff)

1/4 (3.3-202)

where αff is given by Equation (3.3-132).

For the inverted-annular regime,

αfw  =  1 - (αgg)1/4 and αgw  =  (αgg)1/4 (3.3-203)

where αgg is the inverted form of Equation (3.3-132).

For the inverted-slug regime,

αfw  =  αfs and αgw  =  1 - αfs (3.3-204)

where αfs is the inverted form of Equation (3.3-127).

For the mist regime,

αfw  =  αf and αgw  =  αg (3.3-205)
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similar to the bubbly regime.

For the vertically stratified regime,

αfw  =  αf and αgw  =  αg . (3.3-206)

For the horizontally stratified regime,

αfw =   and αgw = (3.3-207)

where θ results from the solution of Equation (3.1-61).

3.3.8.6  The Friction Factor Model. In ATHENA the Darcy-Weisbach friction factor is
computed from correlations for laminar and turbulent flows with interpolation in the transition
regime.There are two turbulent flow friction factor models. The first model computes the turbulent friction

factor using an engineering approximation to the Colebrook-White correlation,3.3-49 while the second
model uses an exponential function with users’ input coefficients.

The friction factor model is simply an interpolation scheme linking the laminar, laminar-turbulent
transition, and turbulent flow regimes. The laminar friction factor is calculated as

(3.3-208)

where Re is the Reynolds number and ΦS is a user-input shape factor for noncircular flow channels. For a

noncircular flow channel such as a concentric annulus, the shape factor is given by3.3-50

. (3.3-209)

where Di is the inner diameter of the annulus and Do is the outer diameter of the annulus. As Di becomes

larger and approaches Do, the shape factor  approaches 2/3. Other noncircular flow channels are

discussed in Reference 3.3-51.

1 Θ
π
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π
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Do
------ 

  2
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Do
------ 

  2
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Do
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  2
-----------------------------------------------------=

ΦS
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The friction factor in the transition region between laminar and turbulent flows is computed by
reciprocal interpolation as

      for 2,200 < Re < 3,000 (3.3-210)

where λL,2200 is the laminar factor at a Reynolds number of 2,200, λT,3000 is the turbulent friction factor at

a Reynolds number of 3,000, and the interpolation factor is defined to lie between zero and one.

The turbulent friction factor is given by the Zigrang-Sylvester approximation3.3-52 to the

Colebrook-White correlation,3.3-49 which is

(3.3-211)

where ε is the surface roughness, and the other variables have been defined previously. The
Zigrang-Sylvester equation, Equation (3.3-211), has the advantage that it is an explicit relation for the
friction factor, while the Colebrook-White correlation is a transcendental function requiring iteration 

for the determination of the friction factor. Reference 3.3-52a incorrectly uses 1.114 rather than the correct
value 1.14. 

3.3.8.7  Heated Wall Effect. The friction model as described above applies to unheated surfaces.
The user may correct the isothermal friction factor for the variation of the fluid viscosity near a heated

surface using the relationship used in the VIPRE code.3.3-53 This relation is given by

(3.3-212)

where fiso is the friction factor evaluated with properties at the bulk fluid temperature, PH is the heated

perimeter of the surface, PW is the wetted perimeter of the volume, µwall is the viscosity evaluated at the

surface temperature, µbulk is the viscosity evaluated at the bulk fluid temperature, and the exponent D is a

user-input constant (viscosity ratio exponent). The default value in the code for the viscosity ratio exponent

D is 0, which results in no viscosity variation effect on wall friction. Kays and Perkins3.3-54 indicate a
range of values for tubes from the literature for the exponent D. The values are 0.50 to 0.58 for liquid

a. Personal communication, D. J. Zigrang to R. A. Riemke, October 1993.
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laminar flow, 0.25 for liquid turbulent flow, 1.0 to 1.35 for vapor/gas laminar flow, and -0.1 for vapor/gas

turbulent flow. Kays and Perkins3.3-54 use the term  rather than the term  for

vapor/gas in Equation (3.3-212). Errors of  result because of this.

3.3.9  Wall Heat Transfer Models

In ATHENA the total wall heat flux ( ) is the heat flux to the vapor/gas plus the heat flux to the

liquid. The general expression for the total wall heat flux is

(3.3-213)

where

hwgg = heat transfer coefficient to vapor/gas, with the vapor/gas temperature as the

reference temperature (W/m2K)

hwgspt = heat transfer coefficient to vapor/gas, with the saturation temperature based on

the total pressure as the reference temperature (W/m2K)

hwgspp = heat transfer coefficient to vapor/gas, with the saturation temperature based on

the vapor partial pressure as the reference temperature (W/m2K)

hwff = heat transfer coefficient to liquid, with the liquid temperature as the reference

temperature (W/m2K)

hwfspt = heat transfer coefficient to liquid, with the saturation temperature based on the

total pressure as the reference temperature (W/m2K)

Tw = wall temperature (K)

Tg = vapor/gas  temperature (K)

Tf = liquid temperature (K)

Tspt = saturation temperature based on the total pressure (K)

Tspp = saturation temperature based on the partial pressure of vapor in the bulk (K).

Twall Tbulk⁄ µwall µbulk⁄

5 %∼

q″total

q″total hwgg Tw Tg–( ) hwgspt Tw Tspt–( ) hwgspp Tw Tspp–( )+ +=

h+ wff Tw Tf–( ) hwfspt Tw Tspt–( )+
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A code user may flag a heat transfer structure as a reflood structure. Structures flagged as reflood
structures employ axial conduction. ATHENA uses a slightly different wall heat transfer logic for reflood
flagged surfaces than it does for other surfaces.

A boiling curve is used in ATHENA to govern the selection of the wall heat transfer correlations
when the wall surface temperature is above the saturation temperature (superheated relative to the
saturation temperature based on total pressure). When a hydraulic volume is voided and the adjacent
surface temperature is subcooled, vapor condensation on the surface is predicted. If noncondensable gases
are present, the phenomena is more complex because while boiling is a function of the wall superheat
based on the total pressure, condensation is based on the partial pressure of vapor. When the wall
temperature is less than the saturation temperature based on total pressure, but greater than the saturation

temperature based on vapor partial pressure, a convection condition exists. Figure 3.3-8 illustrates these
three regions.

There are many factors to consider when deciding which convective heat transfer coefficient
correlation to use. Relative factors that are addressed by the ATHENA logic are: (a) is the pressure above
the critical pressure, (b) is the wall temperature above the saturation temperature, (c) is a noncondensable
gas present, (d) is the fluid liquid, two-phase, or vapor/gas, (e) is the heat flux above the critical heat flux
(CHF), and (f) is the film boiling heat flux greater than the transition boiling heat flux? The decision logic
in ATHENA leads to the selection of the appropriate correlation for the heat transfer coefficient that is
used to find the heat flux.

Figure 3.3-8 ATHENA boiling and condensing curves.
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The heat transfer mode number is a code output parameter used to inform users of the heat transfer
regime or correlation selected by the code. Twelve mode numbers from 0 to 11 are possible, as shown in

Figure 3.3-9, where

T = TRUE

F = FALSE

P = total pressure

Pcrit = critical pressure

Xn = noncondensable mass quality

Xe = equilibrium quality used in wall heat transfer (based on phasic specific

enthalpies and mixture specific enthalpy, with the mixture specific enthalpy
calculated using the flow quality)

=

= flow quality

=

αg = vapor/gas void fraction

Tw = wall temperature

Tspt = vapor saturation temperature based on total pressure

Tspp = vapor saturation temperature based on vapor partial pressure

Tf = liquid temperature

CHF = critical heat flux

q" = heat flux

q"NB = nucleate boiling heat flux

q"FB = film boiling heat flux

Xflowhg 1 Xflow–( )hf+[ ] hf
s–

hg
s hf

s–
-----------------------------------------------------------------------

Xflow

αgρgvg

αgρgvg αfρfvf+
--------------------------------------
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Figure 3.3-9 ATHENA wall heat transfer flow chart.
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q"TB = transition boiling heat flux

Geom = type of hydraulic cell

1Φ = single-phase.

If a noncondensable gas is present, 20 is added to the mode number; and another 40 is added if the
surface is a reflood surface. Most of this logic is built into the HTRC1 subroutine. The heat transfer
coefficients are determined in one of five subroutines: DITTUS, PREDNB, PREBUN, PSTDNB, and
CONDEN. Subroutine CONDEN calculates the coefficients when the wall temperature is below the
saturation temperature based on the partial pressure of vapor. Subroutine DITTUS is called for
single-phase liquid or vapor/gas conditions. Subroutine PREDNB contains the nucleate boiling
correlations for all surfaces except horizontal bundles and subroutine PREBUN is used for the outer
surface of horizontal bundles of rods or tubes. Subroutine PSTDNB has the transition and film boiling
correlations. Subroutine CHFCAL determines the critical heat flux. If reflood is on, subroutine CHFCAL
has been called prior to the call to subroutine HTRC1, and thus it is not called from subroutine HTRC1.
Subroutine SUBOIL calculates the vapor generation rate in the superheated liquid next to a superheated
wall.

ATHENA wall heat transfer correlations are based mainly on internal flow in pipes. Additional
geometries considered in the logic are vertical parallel plates, vertical and horizontal tube bundles, and
horizontal flat plates.

3.3.10  Wall Heat Transfer Correlations

The boiling curve uses the Chen3.3-55 boiling correlation up to the critical heat flux point. A table

lookup method3.3-56 developed by Groeneveld, Cheng, and Doan is used for the prediction of the critical
heat flux. Code users also have the option of using a critical heat flux correlation developed by the Czech

Republic.3.3-57 When the wall superheat exceeds the critical value, the heat flux for both the transition
boiling and the film boiling regimes are calculated and the maximum value is used. This eliminates the
need for a prediction of a minimum film boiling temperature. The Chen-Sundaram-Ozkaynak

correlation3.3-58 is used for transition boiling and a modified Bromley correlation3.3-59 is used for film
boiling.

To obtain the fraction of the boiling heat flux which causes vapor generation near a superheated wall,

the Lahey method3.3-60 is used. The expression for the mass transfer rate per unit volume near a wall, Γw,

is

(3.3-214)Γw
q″Aw

V hg
′ hf

′–( )
-------------------------Mul=
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where

q" = total wall heat flux

Aw = wall surface area

V = cell volume

Mul = multiplier.

The multiplier is defined as

(3.3-215)

where

hcr = critical specific enthalpy for net voids calculated using the Saha-Zuber3.3-61

correlation  (see Volume IV)

εP = the pumping term

= . (3.3-216)

Convection mode calculations rely on evaluating forced turbulent convection, forced laminar
convection, and natural convection and selecting the maximum of these three. The correlations are by

Dittus-Boelter,3.3-62 Kays,3.3-63 and Churchill-Chu,3.3-64 respectively.

For parallel plates the Petukhov correlation3.3-65 is used in place of the Dittus-Boelter correlation,

and the Elenbaas3.3-66 correlation is used instead of the Churchill-Chu correlation. 

ATHENA treats vertical bundles differently than pipes. The turbulent convection coefficient is

multiplied by the tube pitch-to-diameter ratio as suggested by Inayatov.3.3-67

Horizontal bundles in ATHENA differ from pipes in their nucleate boiling, critical heat flux, and
natural convection prediction methods. Nucleate boiling predictions follow the Polley-Ralston-Grant

method,3.3-68 and prediction of critical heat flux uses the Folkin-Goldberg method.3.3-69 Horizontal

bundles use the Churchill-Chu3.3-70 horizontal cylinder correlation for natural circulation.

Mul hf hcr–

hf
s hcr–( ) 1 εP+( )

-----------------------------------------=

ρf hf
s min hf hf

s,( )–[ ]
ρghfg

------------------------------------------------
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Except for the FWHTR component, the heat transfer coefficient in the condensation mode uses the

maximum of the Nusselt3.3-71(laminar) and Shah3.3-72(turbulent) correlations for vertical or inclined

surfaces and the maximum of the Chato3.3-73 (laminar) and Shah3.3-72 (turbulent) correlations for

horizontal surfaces. When noncondensable gases are present, the Colburn-Hougen3.3-74 iteration method is
used to solve for the interface temperature between the vapor/gas and liquid and this value is used in the
heat flux calculation. For the right side (outside diameter) of heat slabs associated with a FWHTR

component, the condensation heat transfer coefficient is that from Chen3.3-75, and is applied to that fraction
of the heat slab above the water level. For the fraction of the heat slab below the water level, the heat
transfer is based on the maximum of liquid forced turbulent convection, forced laminar convection, and
natural convection in a horizontal bundle.

ATHENA has a reflood heat transfer model developed by the Paul Scherrer Institute in

Switzerland.3.3-76

Details of heat transfer coefficient correlations and implementation are given in Volume IV.

3.3.11  Interphase Mass Transfer

The interphase mass transfer is modeled according to the volume flow regime discussed in Section
3.3.1 through Section 3.3.4. It is used to determine the phasic interfacial area and to select the interphase
heat transfer correlation for superheated liquid (SHL), subcooled liquid (SCL), superheated vapor/gas
(SHG), and subcooled vapor/gas (SCG).

The mass transfer model is formulated so that the net interfacial mass transfer rate is composed of
two components; the mass transfer rate in the bulk fluid, and the mass transfer rate near the wall. It is
expressed as

Γg  =  Γig + Γw (3.3-217)

where Γig is given by Equation (3.1-49) and Γw is discussed briefly in Section 3.3.10 and is presented in

more detail in Volume IV.

For components not modeling wall heat transfer and for the general bulk mass transfer processes, the
interfacial mass transfer model in the bulk fluid depends on the volume flow regime. In the bubbly flow
regime for a condition of superheated liquid, interfacial mass transfer is the larger of either the model for

bubble growth developed by Plesset and Zwick3.3-77 or the model for convective heat transfer for a

spherical bubble (modified Lee and Ryley).3.3-78 For the bubbly flow regime with a condition of
superheated vapor/gas, an interphase heat transfer coefficient is assumed that is high enough that the
vapor/gas temperature will relax toward the equilibrium (saturation) condition. Analogously, in the mist
flow regime for the condition of superheated vapor/gas, a convective heat transfer model for a spherical
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droplet3.3-78 is used for the interphase heat transfer coefficient. For mist flow with superheated liquid, an
interphase heat transfer coefficient is assumed that is high enough that the liquid temperature will relax
toward the equilibrium (saturation) condition. In the bubbly flow regime for the subcooled liquid
condition, the interfacial mass transfer is calculated by the modified Unal bubble collapse

model3.3-79,3.3-80 and the Lahey model.3.3-60 In the annular-mist flow regime for the subcooled liquid

condition, the interfacial mass transfer is calculated by the modified Brown droplet model3.3-81 for the

drops and the modified Theofanous interfacial condensation model3.3-82 for the film. Correlations used to

calculate the coefficients in the interfacial mass transfer in the bulk fluid are summarized in Table 3.3-4.
For bubbles and drops, the critical Weber number shown is reduced by 50% in the coded value to reflect
the fact that the code uses the Weber to calculate a particle size that is half the maximum size. Volume IV
of this manual, from which this table was extracted and simplified, contains a more detailed description of
the correlations used in each flow regime.

Table 3.3-4 ATHENA interfacial mass transfer in bulk fluid.

Bubbly Flow

SHL (superheated liquid, ∆Tsf < 0)

where

∆Tsf = Ts - Tf

Reb =

db = average bubble diameter (= 1/2 dmax)

= ,  We = 5, Weσ = max(Weσ,10-10 N/m))

β = 1.0 for bubbly flow

agf = interfacial area per unit volume

Hif max
 kf

db
-----12

π
------∆Tsf

ρfCpf

ρghfg
------------β–

kf

db
----- 2.0 0.74Reb

0.5+( )

agf

Plesset Zwick–( )

modified Lee-Ryley( )

=

1 αbub–( )ρfvfgdb

µf
-----------------------------------------

Weσ 1 αbub–( )

µf vfg
2( )

1 2⁄
-------------------------------------=

Weσ
ρfvfg

2
------------
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=

αbub = max (αg, 10-5)

vfg = vg - vf.

SCL (subcooled liquid, ∆Tsf > 0)

 =  0.0                                                                          αg = 0.0

where

F5 = 0.075       αbub > 0.25

= 1.8φC exp(-45αbub) + 0.075       αbub < 0.25

C = 65.0 - 5.69 x 10-5 (P - 1.0 x 105)         P < 1.1272x106 Pa

=                      P > 1.1272x106 Pa

P = pressure (Pa)

φ = 1.0       |vf| < 0.61 m/s

= [1.639344|vf|]
0.47       |vf| > 0.61 m/s.

SHG (superheated vapor/gas, ∆Tsg < 0)

Hig  =  hig agf

where

hig = 104 W/m2-K

agf is as for bubbly SHL.

3.6αbub

db
------------------

Hif
F5hfgρgρfαg

ρf ρg–
----------------------------- modified Unal Lahey,( )          αg 0.0>=

1
K s•
------------

2.5 9×10

P1.418
------------------- 1

K s•
------------
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SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig is as for bubbly SHG.

Slug Flow

SHL (superheated liquid, ∆Tsf < 0)

Hif  =  Hif,Tb + Hif,bub

where

Hif,Tb =

where

= volumetric interfacial area =  (2.0), where 2.0 is a roughness factor

αTb = Taylor bubble void fraction = 

= Taylor bubble volume/total volume

αgs = the average void fraction in the liquid film and slug region

= αBSF9

F9 =

αBS = αg for bubbly-slug transition (see Section 3.3.1)

αSA = αg for slug-annular mist transition (see Section 3.3.1)

and

Hif,bub is as for Hif for bubbly SHL with the following modifications:

αbub = αAB F9

vfg = (vg - vf) F9
2

3 6×10 agf Tb,
* αTb

agf Tb,
* 4.5

D
------- 

 

αg αgs–
1 αgs–
-------------------

exp 8 αg αBS–
αSA αBS–
------------------------ 

 –
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agf,bub = (agf)bub (1 - αTb) F9

β = F9.

SCL (subcooled liquid, ∆Tsf > 0)

Hif  =  Hif,Tb + Hif,bub

where

Hif,Tb =

where

αTb and  are as for slug SHL

Prf =

Ref =

and

Hif,bub is as for bubbly SCL.

SHG (superheated vapor/gas, ∆Tsg < 0)

Hig  =  Hig,Tb + Hig,bub

where

Hig,Tb =

where

 and αTb are as for slug SHL 

1.18942Ref
0.5Prf

0.5kf

D
----agf Tb,

* αTb

agf Tb,
*

Cpfµf

kf
-------------

ρf vf vg– D
µf

----------------------------

2.2 0.82Reg
0.5+( )

kg

D
-----agf Tb,

* αTb

agf Tb,
*
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Reg =

and

Hig,bub  =  hig (1 - αTb) agf,bub

where

αTb and agf,bub are as for slug SHL

and

hig is as for bubbly SHG.

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig  =  Hig,Tb + Hig,bub

where

Hig,Tb = hig αTb 

where αTb and  are as for slug SHL.

hig is as for bubbly SHG

and

Hig,bub is as for slug SHG.

Annular Mist Flow

SHL (superheated liquid, ∆Tsf < 0)

Hif  =  Hif,ann + Hif,drp

where

Hif,ann = 3.0 x 106 agf,ann

ρg vf vg– D
µg

-----------------------------

agf Tb,
*

agf Tb,
*
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where

agf,ann =

Cann = (30αff)
1/8 (2.5), 2.5 is a roughness factor

αff = αfF11

F11 = (1-G*) exp (-Ce x 10-5λ6)

Ce = 4.0 horizontal

= 7.5 vertical

λ =  horizontal flow

=  vertical flow

vcrit (horizontal)  =  , [see Equation (3.3-29)]

vcrit (vertical)  =  , [see Equation (3.3-19)]

G* = 10-4 Ref
0.25

Ref =

Hif,drp =

dd = , We = 1.5, We σ = max (We σ, 10-10 N/m)

vfg = vg - vf

4Cann

D
------------- 

  1 αff–( )1 2⁄

vg vf–
vcrit

------------------

αgvg

vcrit
-----------

0.5 ρf ρg–( )gαgApipe

ρgD θsin
-------------------------------------------

1 2⁄
1 θcos–( )

3.2 σg ρf ρg–( )[ ]1 4⁄

ρg
1 2⁄

-----------------------------------------------

αfρf vf D
µf

----------------------

kf

dd
-----F13agf drp,

Weσ
ρgvfg

2
------------
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αfd =

F13 =

agf,drp = .

For an annulus component, αff = αf and αfd = 0.

SCL (subcooled liquid, ∆Tsf > 0)

Hif  =  Hif,ann + Hif,drp

where

Hif,ann = 10-3 ρfCpf |vf| agf,ann (modified Theofanous)

where

agf,ann is as for annular mist SHL

and

Hif,drp =  (modified Brown)

where

agf,drp, F13, and dd are as for annular mist SHL.

For an annulus component, αff = αf and αfd = 0.

SHG (superheated vapor/gas, ∆Tsg < 0)

Hig  =  Hig,ann + Hig,drp

where

max αf αff–
1 αff–
------------------ 1 α– AM( ),

2.0 7.0min 1.0 Cpfmax 0.0 ∆Tsf,( )
hfg

--------------------------------------------- 8.0,++

3.6αfd

dd
--------------- 1 αff–( )

kf

dd
-----F13agf drp,
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Hig,ann =

where

Reg =

agf,ann is as for annular mist SHL, and

 (Lee-Riley)

where

dd is as for annular mist SHL

Red = , where We = 1.5

agf,drp, αf,d, and vfg are as for annular mist SHL.

For an annulus component, αff = αf and αfd = 0.

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig   =   Hig,ann + Hig,drp

where

Hig,ann = higagf,ann

where hig is as for bubbly SHG and agf,ann is as for annular mist SHL

and

Hig,drp  =  hig agf,drp

where

hig is as for bubbly SHG and

kg

D
-----0.023Reg

0.8agf ann,

αgρg vg vf– D
µg

-----------------------------------

Hig drp,
kg

dd
----- 2.0 0.5Red

0.5+( )agf drp,=

1 αf d,–( )2.5ρgvfgdd

µg
----------------------------------------------

Weσ 1 αf d,–( )2.5

µgvfg
----------------------------------------=
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agf,drp is as for annular mist SHG.

For an annulus component, αff = αf and αfd = 0.

Inverted Annular Flow

SHL (superheated liquid, ∆Tsf < 0)

Hif  =  Hif,bub + Hif,ann

where

Hif,bub is as for Hif for bubbly with the following modifications:

vfg =

where

F16 = 1 - F17

F17 =

αIAN = αg inverted annular

= αAB IAN/ISL transition (see Figure 3.3-1)

β = F16

αg = αbub

αbub =

αB = F17 αIAN

agf,bub =

and

vg vf–( )F16
2

exp 8 αBS αIAN–( )–
αBS

-------------------------------------

αIAN αB–( )
1 αB–( )

----------------------------

3.6αbub

db
------------------ 1 αB–( )F16
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Hif,ann = 3 x 106 agf,ann

where

agf,ann =  F15 (2.5), where 2.5 is a roughness factor

F15 = (1 - αB)1/2.

SCL (subcooled liquid, ∆Tsf > 0)

Hif  =  Hif,bub + Hif,ann

where

Hif,bub is as for bubbly SCL

and

Hif,ann =

where

ReIAN =

agf,ann and αIAN are as for inverted annular SHL.

SHG (superheated vapor/gas, ∆Tsg < 0)

Hig  =  Hig,bub + Hig,ann

where

Hig,bub = hig agf,bub

where

hig is as for bubbly SHG and agf,bub is as for inverted annular SHL

and

4
D
----

kf

D
----0.023ReIAN

0.8 agf ann,

1 αIAN–( )
ρf vf vg–

µf
-----------------------
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Hig,ann =  agf,ann

where

agf,ann is as for inverted annular SHL.

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig is as for inverted annular SHG.

Inverted Slug Flow

SHL (superheated liquid, ∆Tsf < 0)

Hif  =  Hif,ann + Hif,drp

where

Hif,ann =  F13 agf,ann

where

agf,ann =  αB(2.5), where 2.5 is a roughness factor

αB =

αdrp = (1 - αAM) F21

F21 =

and

Hif,drp =  F13 agf,drp

where

kg

D
-----

kf

D
----

4.5
D

-------

αf αdrp–
1 αdrp–
--------------------

exp  αAM αg–( )
αAM αBS–( )

------------------------------–

kf

dd
-----
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agf,drp =

dd = characteristic droplet diameter

= , where We = 6.0

vfg = (vg - vf) .

SCL (subcooled liquid, ∆Tsf > 0)

Hif  =  Hif,ann + Hif,drp

where

Hif,ann =  F13 agf,ann

where

F13 is as for annular-mist SCL

agf,ann is as for inverted slug SHL

and

Hif,drp =  F13 agf,drp

where

agf,drp is as for inverted slug SHL.

SHG (superheated vapor/gas, ∆Tsg < 0)

Hig  =  Hig,ann + Hig,drp

where

3.6αdrp

dd
----------------- 1 αB–( )

Weσ
ρgvfg

2
------------

F21
2

kf

D
----

kf

dd
-----
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Hig,ann =  agf,ann

where

agf,ann is as for inverted slug SHL

and

Hig,drp =  (2.0 + 0.5 ) agf,drp

where

dd and agf,drp are as for inverted slug SHL

and

Redrp = .

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig is as for inverted slug SHG.

Dispersed (Droplet, Mist) Flow

SHL (superheated liquid, ∆Tsf < 0)

where

agf =

dd = , where We = 1.5 for pre-CHF and 6.0 for post-CHF

vfg = vg - vf.

kg

D
-----

kg

dd
----- Redrp

0.5

ρgvfgdd

µg
-----------------

Hif
kf

dd
-----F13agf=

3.6αf

dd
-------------

Weσ
ρgvfg

2
------------
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SCL (subcooled liquid, ∆Tsf > 0)

where

F13 is as for annular mist SCL

agf is as for dispersed SHL.

SHG (superheated vapor/gas, ∆Tsg < 0)

        = 0.0                                          αf = 0.0

where dd and agf are as for dispersed SHL and

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig  =  0.0                  αf = 0.0 and Ps < Ptriple point

 =  hig agf otherwise

where

hig is as for bubbly SHG and

agf is as for dispersed SHG.

Horizontally Stratified Flow

Hif  =  0 unless αg > 0 or ∆Tsf < -1 K

Hig  =  0 unless αf > 0 or ∆Tsg > 0.2 K

Hif
kf

dd
-----agf=

Hig
kg

dd
----- 2.0 0.5 Redrp

0.5+( )agf         αf 0.0>=

Redrp
1 αf–( )2.5ρgvfgdd

µg
------------------------------------------

We σ 1 αf–( )2.5•
µgvfg

------------------------------------------     pre-CHF and post-CHF.= =
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otherwise:

SHL (superheated liquid, ∆Tsf < 0)

where

Dhf = liquid phase hydraulic diameter

=  (see Figure 3.1-2 for definition of θ)

Ref =

agf =

F27 = .

SCL (subcooled liquid, ∆Tsf > 0)

where

Dhf, Ref and agf are as for horizontally stratified SHL.

SHG (superheated vapor/gas, ∆Tsg < 0)

where

Dhg = vapor/gas phase hydraulic diameter

Hif
kf

Dhf
-------- 0.023Ref

0.8 3.81972 ∆TsfρfCpf

ρghfgmax 4αg 1,( )
--------------------------------------------– agf=

παfD
π θ– θsin+
-----------------------------

αfρf vg vf– D
µf

----------------------------------

4 θsin
πD

--------------F27

1 vg vf–
vcrit

---------------
1 2⁄

+

Hif
kf

Dhf
-------- 0.023Ref

0.8( )agf=

Hig
kg

Dhg
-------- 0.023Reg

0.8 4higmax 0.0 0.25 αg–,( )+[ ]agf=
INEEL-EXT-98-00834-V1 3-166



ATHENA/2.3
=

Reg =

hig is as for bubbly SHG, and agf is as for horizontally stratified SHL.

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig  =  hig agf

where

hig is as for bubbly SHG and

agf is as for horizontally stratified SHL.

Vertically Stratified Flow

SHL (superheated liquid, ∆Tsf < 0)

Hif  =  Hif,REG

where 

REG = flow regime of flow when not vertically stratified, which can be BBY, SLG,
SLG/ANM, ANM, MPR, IAN, IAN/ISL, ISL, MST, MPO, BBY/IAN, IAN/ISL
-SLG, SLG/ISL, ISL-SLG/ANM, ANM/MST, MPR/MPO,  (see flow regime
map, Figure 3.3-1).

SCL (subcooled liquid, ∆Tsf > 0)

   (McAdams)

where

agf =

L = length of volume cell

παgD
θ θsin+
--------------------

αgρg vg vf– D
µg

-----------------------------------

Hif Nuf
kf

D
----agf=

A
V
---- A

AL
-------- 1

L
---= =
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Nuf = 0.27 (GrfPrf)
0.25

SHG (superheated vapor/gas, ∆Tsg < 0)

 (McAdams)

where

Nug = 0.27 (GrgPrg)0.25 

agf =

agf is as for vertically stratified SHL.

SCG (subcooled vapor/gas, ∆Tsg > 0)

Hig  =  Hig,REG.

3.3.12  Direct Heating

The direct (sensible) heating between the noncondensable gas and liquid becomes important when
there is noncondensable present (see Section 3.1.1.2). This occurs when Ps < P. The direct heat transfer

coefficient is

. (3.3-218)

Thus, when the noncondensable gas is subcooled, Hgf uses the value of Hig at saturation.

3.3.13  References

3.3-1. W. L. Weaver et al., TRAC-BF1 Manual: Extensions to TRAC-BD1/MOD1, NUREG/CR-4391,
EGG-2417, Idaho National Engineering Laboratory, August 1986.

3.3-2. M. M. Giles et al., TRAC-BF1/MOD1: An Advanced Best Estimate Computer Program for BWR
Accident Analysis, NUREG/CR-4356, EGG-2626, Idaho National Engineering Laboratory, June
1992 and August 1992.

Hig Nug
kg

D
-----agf=

A
V
---- A

AL
-------- 1

L
---= =

Hgf
Hig Tg Ts>( )            Tg Ts>

Hig Tg Ts=( )            Tg Ts≤



=

INEEL-EXT-98-00834-V1 3-168



ATHENA/2.3
3.3-3. S. Z. Rouhani et al., TRAC-BF1/MOD1 Models and Correlations, NUREG/CR-4391,
EGG-2680, Idaho National Engineering Laboratory, August 1992.

3.3-4. Y. Taitel and A. E. Dukler, “A Model of Predicting Flow Regime Transitions in Horizontal and
Near Horizontal Gas-Liquid Flow,” AIChE Journal, 22, 1976, pp. 47-55.

3.3-5. Y. Taitel, D. Bornea, and A. E. Dukler, “Modeling Flow Pattern Transitions for Steady Upward
Gas-Liquid Flow in Vertical Tubes,” AIChE Journal, 26, 1980, pp. 345-354.

3.3-6. M. Ishii and G. De Jarlais, “Inverted Annular Flow Modeling,” Advanced Code Review Group
Meeting, Idaho Falls, ID, July 27, 1982.

3.3-7. M. Ishii and T. C. Chawla, Local Drag Laws in Dispersed Two-Phase Flow, NUREG/CR-1230,
ANL-79-105, Argonne National Laboratory, December 1979.

3.3-8. M. Ishii and K. Mishima, Study of Two-Fluid Model and Interfacial Area, NUREG/CR-1873,
ANL-80-111, Argonne National Laboratory, December 1980.

3.3-9. M. A. Vince and R. T. Lahey, Jr., “On the Development of An Objective Flow Regime
Indicator,” International Journal of Multiphase Flow, 8, 1982, pp. 93-124.

3.3-10. M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Collection de la Direction des
Etudes d’Recherches of Electricute de France, 1975.

3.3-11. D. T. Dumitrescu, “Stomung an einer Luftblase in senkrechten Rohr,” Z. Angel Math. Mech. 23,
1943, p. 139.

3.3-12. V. H. Ransom et al., RELAP5/MOD2 Code Manual, Volume 3; Developmental Assessment
Problems, EGG-TFM-7952, Idaho National Engineering Laboratory, December 1987.

3.3-13. K. Mishima and M. Ishii, “Flow Regime Transition Criteria for Upward Two-Phase Flow in
Vertical Tubes,” International Journal of Heat and Mass Transfer, 27, 1984, pp. 723-737.

3.3-14. K. W. McQuillan and P. B. Whalley, Flow Patterns in Vertical Two-Phase Flow, AERE-R
11032, 1983.

3.3-15. K. W. McQuillan and P. B. Whalley, “Flow Patterns in Vertical Two-Phase Flow,” International
Journal of Multiphase Flow, 11, 1985, pp. 161-175.

3.3-16. J. M. Putney, An Assessment of the Annular Flow Transition Criteria and Interphase Friction
Models in RELAP5/MOD2, CERL Report RD/L/3451/R89, PWR/HTWG/P(88)653, February
1989.

3.3-17. V. H. Ransom et al., RELAP5/MOD2 Code Manual, NUREG/CR-4312, EGG-2396, Idaho
National Engineering Laboratory, August 1985 and December 1985, revised March 1987.
3-169 INEEL-EXT-98-00834-V1



ATHENA/2.3
3.3-18. R. A. Dimenna et al., RELAP5/MOD2 Models and Correlations, NUREG/CR-5194, EGG-2531,
Idaho National Engineering Laboratory, August 1988.

3.3-19. T. N. Tandon, H. K. Varma, and C. P. Gupta, “A New Flow Regime Map for Condensation
Inside Horizontal Tubes,” Journal of Heat Transfer, 104, November 1982, pp. 763-768.

3.3-20. Y. Taitel, N. Lee, and A. E. Dukler, “Transient Gas-Liquid Flow in Horizontal Pipes: Modeling
Flow Pattern Transitions,” AIChE Journal, 24, 5, 1978, pp. 920-934.

3.3-21. J. G. M. Anderson and K. H. Chu, BWR Refill-Reflood Program Task 4.7--Constitutive
Correlations for Shear and Heat Transfer for the BWR Version of TRAC, NUREG/CR-2134,
EPRI NP-1582, 1981.

3.3-22. M. Ishii, T. Chawla, and N. Zuber, “Constitutive Equation for Vapor Drift Velocity in Two
Phase Annular Flow,” AIChE Journal, 22, 1976, pp. 283-289.

3.3-23. M. Ishii, One-dimensional Drift-flux Model and Constitutive Equations for Relative Motion
Between Phases in Various Two-phase Flow Regimes, ANL-77-47, Argonne National
Laboratory, September 1977.

3.3-24. G. B. Wallis, One-dimensional Two-phase Flow, New York: McGraw-Hill, 1969.

3.3-25. A. H. Shapiro and A. J. Erickson, Transactions of ASME, 79, 1957, p. 775.

3.3-26. J. M. Putney, Proposals for Improving Interphase Drag Modeling for the Bubbly and Slug
Regimes in RELAP5, CERL Report RD/L/3306/R88, PWR/HTWG/P(88)622, June 1988.

3.3-27. J. M. Putney, Implementation of a New Bubbly-Slug Interphase Drag Model in RELAP5/MOD2,
CERL Report RD/L/3369/R88, PWR/HTWG/P(88)597, November 1988.

3.3-28. J. M. Putney, Equations for Calculating Interfacial Drag and Shear from Void Fraction
Correlations, CERL Report RD/L/3429/R88, PWR/HTWG/P(88)630, December 1988.

3.3-29. J. M. Putney, Development of a New Bubbly-Slug Interfacial Friction Model for RELAP5--Final
Report, National Power Report ESTD/L/0075/R89, PWR/HTWG/P(89)722, October 1989.

3.3-30. J. M. Putney, “Development of a New Bubbly-Slug Interfacial Friction Model for RELAP5,”
Nuclear Engineering and Design, 131, 1991, pp. 223-240.

3.3-31. B. Chexal and G. Lellouche, A Full-Range Drift-Flux Correlation for Vertical Flows (Revision
1), EPRI NP-3989-SR, September 1986.

3.3-32. B. Chexal et al., The Chexal-Lellouche Void Fraction Correlation for Generalized Applications,
Electric Power Research Institute, NSAC-139, April 1991.
INEEL-EXT-98-00834-V1 3-170



ATHENA/2.3
3.3-33. B. Chexal et al., Void Fraction Technology for Design and Analysis, Electric Power Research
Institute, TR-106326, March 1997.

3.3-34. P. Griffith, "The Prediction of Low-Quality Boiling Voids," Transactions of the ASME, Journal
of Heat Transfer, 86, 1964, pp. 327-333.

3.3-35. N. Zuber and J. A. Findlay, “Average Volumetric Concentrations in Two-Phase Flow Systems,”
Transactions of the ASME, Journal of Heat Transfer, 87, 1965, pp. 453-568.

3.3-36. N. Zuber et al., Steady-State and Transient Void Fraction in Two-Phase Flow Systems, General
Electric Company, GEAP-5417, 1967.

3.3-37. I. Kataoka and M. Ishii, “Drift Flux Model for Large Diameter Pipe and New Correlation for
Pool Void Fraction,” International Journal of Heat and Mass Transfer, 30, 1987, pp. 1927-1939.

3.3-38. S. Z. Rouhani, Modified Correlations for Void and Pressure Drop, AB Atomenergi, Sweden,
Internal Report AE-RTC 841, March 1969.

3.3-39. G. B. Wallis and S. Makkenchery, “The Hanging Film Phenomenon in Vertical Annular
Two-Phase Flow,” Transactions of the ASME, Journal of Fluids Engineering, 96, 1974, p.
297-298.

3.3-40. J. A. Holmes, “Description of the Drift Flux Model in the LOCA Code RELAP-UK,” I. Mech.
E., C206/77, 1977.

3.3-41. V. H. Ransom et al., RELAP5/MOD1 Code Manual, NUREG/CR-1826, EGG-2070, Idaho
National Engineering Laboratory, March 1982.

3.3-42. D. Bharathan, G. B. Wallis, and H. J. Richter, Air-Water Counter-Current Annular Flow,
EPRI/NP-1165, 1979.

3.3-43. G. DeJarlais and M. Ishii, Inverted Annular Flow Experimental Study, NUREG/CR-4277,
ANL-85-31, Argonne National Laboratory, April 1985.

3.3-44. N. Zuber, “On the Dispersed Two-Phase Flow in the Laminar Flow Regime,” Chemical
Engineering Science, 19, 1964, pp. 897-917.

3.3-45. D. A. Drew, L. Y. Cheng, and R. T. Lahey, Jr., “The Analysis of Virtual Mass Effects in
Two-Phase Flow,” International Journal of Multiphase Flow, 5, 1979, pp. 233-242.

3.3-46. K. T. Claxton, J. G. Collier, and J. A. Ward, H.T.F.S. Correlation for Two-Phase Pressure Drop
and Void Fraction in Tubes, HTFS Proprietary Report HTFS-DR-28, AERE-R7162, November
1972.

3.3-47. D. Chisholm, “A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase
Flow,” International Journal of Heat and Mass Transfer, 10, 1967, pp. 1767-1778.
3-171 INEEL-EXT-98-00834-V1



ATHENA/2.3
3.3-48. R. W. Lockhart and R. C. Martinelli, “Proposed Correlation of Data for Isothermal Two-Phase,
Two-Component Flow in Pipes,” Chemical Engineering Progress, 45, 1, 1949, pp. 39-48.

3.3-49. C. F. Colebrook, “Turbulent Flow in Pipes with Particular Reference to the Transition Region
Between Smooth and Rough Pipe Laws,” Journal of Institute of Civil Engineers, 11, 1939, pp.
133-156.

3.3-50. J. G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, New York: McGraw-Hill,
1958.

3.3-51. F. M. White, Viscous Fluid Flow, New York: McGraw-Hill, 1974.

3.3-52. D. J. Zigrang and N. D. Sylvester, “A Review of Explicit Friction Factor Equations,”
Transactions of ASME, Journal of Energy Resources Technology, 107, 1985, pp. 280-283.

3.3-53. C. W. Stewart et al., VIPRE-01: A Thermal-Hydraulic Code for Reactor Cores, EPRI
NP-2511-CCM, Pacific Northwest Laboratory, July 1985.

3.3-54. W. M. Kays and H. C. Perkins, “Forced Convection, Internal Flow in Ducts,” in: W. M.
Rohsenow, J. P. Hartnett, and E. N. Ganic (eds.), Handbook of Heat Transfer Fundamentals,
New York: McGraw-Hill, 1985.

3.3-55. J. C. Chen, “A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow,”
Process Design and Development, 5, 1966, pp. 322-327.

3.3-56. D. C. Groeneveld, S. C. Cheng, and T. Doan, “1986 AECL-UO Critical Heat Flux Lookup
Table,” Heat Transfer Engineering, 7, 1-2, 1986, pp. 46-62.

3.3-57. R. Pernicia and J. Cizek, “General Correlation for Prediction of Critical Heat Flux Ratio,”
Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics,
NURETH-7, Saratoga Springs, NY, September 10 - 15, 1995, NUREG/CP-0142, Vol. 4.

3.3-58. J. C. Chen, R. K. Sundaram, and F. T. Ozkaynak, A Phenomenological Correlation for
Post-CHF Heat Transfer, NUREG-0237, June 1977.

3.3-59. L. A. Bromley, “Heat Transfer in Stable Film Boiling,” Chemical Engineering Progress, 46,
1950, pp. 221-227.

3.3-60. R. T. Lahey, “A Mechanistic Subcooled Boiling Model,” Proceedings Sixth International Heat
Transfer Conference, Toronto, Canada, August 7-11, 1978, Volume 1, pp. 293-297.

3.3-61. P. Saha and N. Zuber, “Point of Net Vapor Generation and Vapor Void Fraction in Subcooled
Boiling,” Proceedings Fifth International Heat Transfer Conference,  Tokyo, Japan, September
3-7, 1974, Volume 4, pp. 175-179.
INEEL-EXT-98-00834-V1 3-172



ATHENA/2.3
3.3-62. F. W. Dittus and L. M. K. Boelter, “Heat Transfer in Automobile Radiators of the Tubular
Type,” Publications in Engineering, 2, University of California, Berkeley, 1930, pp. 443-461.

3.3-63. W. M. Kays, “Numerical Solution for Laminar Flow Heat Transfer in Circular Tubes,”
Transactions of the ASME, 77, 1955, pp. 1265-1274.

3.3-64. S. W. Churchill and H. H. S. Chu, “Correlating Equations for Laminar and Turbulent Free
Convection from a Vertical Plate,” International Journal of Heat and Mass Transfer, 18, 1975,
pp. 1323-1329.

3.3-65. B. S. Petukhov, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical
Properties,” Advances in Heat Transfer, New York: Academic Press, 1970, pp. 503-565.

3.3-66. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, New York: Wiley, 1990, p. 501.

3.3-67. A. Y. Inayatov, “Correlation of Data on Heat Transfer Flow Parallel to Tube Bundles at Relative
Tube Pitches of 1.1 < s/d < 1.6,” Heat Transfer-Soviet Research, 7, 3, May-June 1975.

3.3-68. G. T. Polley, T. Ralston, and I. D. R. Grant, “Forced Crossflow Boiling in an Ideal In-line Tube
Bundle,” ASME 80-HT-46, 1981.

3.3-69. B. S. Folkin and Y. N. Goldberg, “Simulation of Free Convection Boiling Crisis In Vapor
Blanketing of a Horizontal Tube Bundle,” Heat Transfer Soviet Research, 12, 3, 1980, pp.77-81.

3.3-70. S. W. Churchill and H. H. S. Chu, “Correlating Equations for Laminar and Turbulent Free
Convection from a Horizontal Cylinder,” International Journal of Heat and Mass Transfer, 18,
1975, p. 1049-1053.

3.3-71. W. Nusselt, “Die Oberflachenkondensation des Wasserdampfes,” Zieschrift Ver. Deutsch. Ing.,
60, 1916, pp. 541-546 and 569-575.

3.3-72. M. M. Shah, “A General Correlation for Heat Transfer during Film Condensation Inside Pipes,”
International Journal of Heat and Mass Transfer, 22, 1979, pp. 547-556.

3.3-73. J. C. Chato, “Laminar Condensation Inside Horizontal and Inclined Tubes, ”American Society of
Heating, Refrigeration, and  Air Conditioning Journal, 4, 1962, pp. 52-60.

3.3-74. A. P. Colburn and O. A. Hougen, “Design of Cooler Condensers for Mixtures of Vapors with
Non-Condensing Gases,” Industrial and Engineering Chemistry, 26, 1934, pp. 1178-1182.

3.3-75. M. M. Chen,“An Analytical Study of Laminar Film Condensation: Part 2 - Single and Multiple
Horizontal Tubes,” Transactions of the ASME, Journal of Heat Transfer, 83, 1961, pp. 55-60.

3.3-76. G. Th. Analytis, “Developmental Assessment of RELAP5/MOD3.1 with Separate Effect and
Integral Test Experiments: Model Changes and Options,” Nuclear Engineering and Design, 163,
1996, pp. 125-148.
3-173 INEEL-EXT-98-00834-V1



ATHENA/2.3
3.3-77. M. S. Plesset and S. A. Zwick, “Growth of Vapor Bubbles in Superheated Liquids,” Journal of
Applied Physics, 25, 4, 1954, pp. 493-500.

3.3-78. K. Lee and D. J. Ryley, “The Evaporation of Water Droplets in Superheated Steam,”
Transactions of the ASME, Journal of Heat Transfer, November 1968, pp. 445-456.

3.3-79. H. C. Unal, “Maximum Bubble Diameter, Maximum Bubble-Growth Time and Bubble-Growth

Rate During the Subcooled Nucleate Flow Boiling of Water up to 17.7 MN/m2,” International
Journal of Heat and Mass Transfer, 19, 1976, pp. 643-649.

3.3-80. R. A. Riemke, “Modification to Unal’s Subcooled Flow Boiling Bubble Model,” Nuclear
Technology, 102, 1993, pp. 416-417.

3.3-81. G. Brown, “Heat Transmission by Condensation of Steam on a Spray of Water Drops,” Institute
of Mechanical Engineers, 1951, pp. 49-52.

3.3-82. T. G. Theofanous, “Modeling of Basic Condensation Processes,” The Water Reactor Safety
Research Workshop on Condensation, Silver Springs, MD, May 24-25, 1979.
INEEL-EXT-98-00834-V1 3-174



ATHENA/2.3
3.4  Special Process Models

Certain models in ATHENA have been developed to simulate special processes. Special process
models are used in ATHENA to model those processes which are so complex in nature that they must be
modeled by quasi-steady emperical models. Choking, stratification entrainment/pull-through, abrupt area
change, and counter-current flow limitation are examples of such processes.

The use of quasi-stready models for choking and abrupt area change results in considerable savings
in computer time since it is not necessary to use fine nodalization at such points. The fluid dynamic and
thermodynamic processes for such phenomena are approximated by steady flow relations, which can be
solved to provide lumped parameter data and/or boundary condition data for the transient solution. This
results is direct savings since fewer fluid volumes are required and indirect savings due to the ability to use
larger time steps. A decisive advantage for the use of a choking model results when choking at points of
abrupt area change occurs, such as at double-ended pipe breaks or at a sudden contraction due to an orifice.
It is not possible to construct one-dimensional grids at such points that will result is meaningful
self-choking results, because of the discontinuous variation of flow area with length.

 These models are described in the following subsections.

3.4.1  Choked Flow

A choked-flow model developed by Ransom and Trapp3.4-1,3.4-2 is included primarily for calculation
of the mass discharge from the system at a pipe break or a nozzle. Generally, the flow at the break or
nozzle is choked until the system pressure nears the containment pressure. The choked-flow model is used
to predict if the flow is choked at a break or nozzle and, if it is, to establish the discharge boundary
condition. In addition, the choked-flow model can be used to predict existence of and calculate choked
flow at internal points in the system.

Choking is defined as the condition wherein the mass flow rate becomes independent of the
downstream conditions (that point at which further reduction in the downstream pressure does not change
the mass flow rate). The fundamental reason that choking occurs is that acoustic signals can no longer
propagate upstream. This occurs when the fluid velocity equals or exceeds the propagation velocity. The
choked-flow model is based on a definition that is established by a characteristic analysis using
time-dependent differential equations.

Consider a system of n first-order, quasi-linear, partial differential equations of the form

. (3.4-1)

The characteristic directions (or characteristic velocities) of the system are defined3.4-3,3.4-4 as the

roots,a λi(i < n), of the characteristic polynomial

A U( )∂U
∂t
------- B U( )∂U

∂x
------- C U( )+ + 0=
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(Aλ - B)  =  0 . (3.4-2)

The real part of any root, λi, gives the velocity of signal propagation along the corresponding

characteristic path in the space/time plane. The imaginary part of any complex root, λi, gives the rate of

growth or decay of the signal propagating along the respective path. For a hyperbolic system in which all
the roots of Equation (3.4-2) are real and nonzero, the number of boundary conditions required at any
boundary point equals the number of characteristic lines entering the solution region as time increases. If
we consider the system [Equation (3.4-1)] for a particular region 0 < x < L and examine the boundary

conditions at x = L, as long as any λi are less than zero, we must supply some boundary information to

obtain the solution. If all λi are greater than or equal to zero, no boundary conditions are needed at x = L;

and the interior solution is unaffected by conditions beyond this boundary.

A choked condition exists when no information can propagate into the solution region from the
exterior. Such a condition exists at the boundary point, x = L, when

λj  =  0 for some j < n (3.4−3)

λi  >  0 for all i j . (3.4-4)

These are the mathematical conditions satisfied by the equations of motion for a flowing fluid when

reduction in downstream pressure ceases to result in increased flow rate. It is well known3.4-5 that the
choked condition for single-phase flow occurs when the fluid velocity just equals the local sound speed.

For this case, one of the λi’s is just equal to zero. For the two-phase case, it is possible for all λi’s to be

greater than zero under special conditions which can exist during discharge of a subcooled liquid.

Extensive investigation was carried out to determine a two-phase choked-flow criterion under two

assumed conditions:a (a) thermal equilibrium between phases, and (b) adiabatic phases without phase

change (frozen).3.4-6 The frozen assumption was in poor agreement with data compared to the thermal
equilibrium assumption. Therefore, the thermal equilibrium assumption with slip is used as the basis for
the ATHENA choked-flow criterion when two phase conditions exist.

3.4.1.1  Choking Criterion for Nonhomogeneous, Equilibrium Two-Phase Flow. The
two-fluid model for the conditions of thermal equilibrium (equilibrium interphase mass transfer) is

a. The number n is the number of differential equations comprising the system defined by Equation (3.4-1) and 

the number i designates any of the corresponding n roots.

a. The hydrodynamic model is not based on either of these assumptions. However, the purpose of this analysis is 

simply to establish a criterion for a choked flow; thus, there is no conflict with the basic hydrodynamic model.

≠
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described by the overall mass continuity equation, two-phasic momentum equations, and the mixture
entropy equation. This system of equations is

(3.4−5)

(3.4-6)

(3.4-7)

. (3.4−8)

The momentum equations include the interphase force terms due to relative acceleration.3.4-7 These
force terms have a significant effect on wave propagation velocity and consequently on the choked flow
velocity. The particular form chosen is frame invariant and symmetrical; and the coefficient of virtual

mass, Cαgαfρ, is chosen to ensure a smooth transition between pure vapor/gas and pure liquid. For a

dispersed flow, the constant, C, has a theoretical value of 0.5; whereas for a separated flow, the value may
approach zero. The energy equation is written in terms of mixture entropy, which is constant for adiabatic
flow. (The energy dissipation associated with interphase mass transfer and relative phase acceleration is
neglected.)

The nondifferential source terms, C(U), in Equation (3.4-1) do not enter into the characteristic
analysis or affect the propagation velocities. For this reason, the source terms associated with wall friction,
interphase drag, and heat transfer are omitted for brevity in Equations (3.4-5) through (3.4-8).

In the thermal equilibrium case, ρg, ρf, Sg, and Sf are known functions of the pressure only (the

vapor/gas and liquid values along the saturation curve). The derivatives of these variables are designated
by an asterisk as follows:

(3.4−9)

∂ αgρg αfρf+( )
∂t

------------------------------------
∂ αgρgvg αfρfvf+( )

∂x
-----------------------------------------------+ 0=

αgρg
∂vg

∂t
-------- vg

∂vg

∂x
--------+ 

  αg
∂P
∂x
------+

Cαgαfρ
∂vg

∂t
-------- vf

∂vg

∂x
--------

∂vf

∂t
-------– vg

∂vf

∂x
-------–+ 

 + 0=

αfρf
∂vf

∂t
------- vf

∂vf

∂x
-------+ 

  αf
∂P
∂x
------+

Cαfαgρ
∂vf

∂t
------- vg

∂vf

∂x
-------

∂vg

∂t
--------– vf

∂vg

∂x
--------–+ 

 + 0=

∂ αgρgSg αfρfSf+( )
∂t

-----------------------------------------------
∂ αgρgSgvg αfρfSfvf+( )

∂x
----------------------------------------------------------+ 0=

ρf
* dρf

s

dP
-------- ρ, g

* dρg
s

dP
--------= =
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. (3.4-10)

The system of governing equations [Equations (3.4-5) through (3.4-8)] can be written in terms of the

four dependent variables, αg, P, vg, and vf, by application of the chain rule and the property derivatives

[Equations (3.4-9) and (3.4-10)]. Thus, the system of equations can be written in the form of Equation
(3.4-1) where the A and B are fourth-order square coefficient matrices.

The characteristic polynomial that results is fourth-order in λ, and factorization can only be carried

out approximately to obtain the roots for λ and establish the choking criterion. The first two roots are

. (3.4−11)

These two roots are obtained by neglecting the fourth-order factors relative to the second-order

factors in (λ - vg) and (λ - vf). There are no first- or third-order factors. Inspection of Equation (3.4-11)

shows that λ1,2 have values between vg and vf; thus, the fourth-order factors, (λ - vg) and (λ - vf), are small

(i.e., neglecting these terms is justified). The values for λ1,2 may be real or complex depending on the sign

of the quantity .

The remaining two roots are obtained by dividing out the quadratic factor containing λ1,2, neglecting

the remainder, and factoring the remaining quadratic terms. [This procedure can be shown to be analogous
to neglecting the second- and higher-order terms in the relative velocity, (vg - vf).] The remaining roots are

λ3,4  =  v + D(vg - vf) + a (3.4-12)

where

v = (3.4-13)

Sf
* dSf

s

dP
-------- S, g

* dSg
s

dP
--------= =

λ1 2,

αfρg
ρC
2

-------   ρC
2

------- 
  2

αgαfρgρf–
1 2⁄

±+
 
 
 

vg

αgρf
ρC
2

-------   +− ρC
2

------- 
  2

αgαfρgρf–
1 2⁄

+
 
 
 

vf+
 
 
 
 
 
 
 
 

αfρg
ρC
2

-------+ 
  αgρf

ρC
2

-------+ 
 +

-------------------------------------------------------------------------------------------------------------------=

ρC
2

------- 
  2

αgαfρgρf–

αgρgvg αfρfvf+
ρ

--------------------------------------
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a = (3.4-14)

and

. (3.4-15)

The quantity, aHE, is the homogeneous equilibrium speed of sound (see Volume IV). The roots, λ3,4,

have only real values.

The general nature and significance of these roots is revealed by applying the characteristic
considerations. The speed of propagation of small disturbances is related to the values of the characteristic
roots. In general, the velocity of propagation corresponds to the real part of a root, and the growth or
attenuation is associated with the complex part of the root. Choking will occur when the signal, which
propagates with the largest velocity relative to the fluid, is just stationary, i.e.,

 for some j < 4 (3.4-16)

and

 for all i ≠ j . (3.4-17)

The existence of complex roots for λ1,2 makes the initial boundary value problem ill-posed. This

problem has been discussed by many investigators,3.4-8,3.4-9 and the addition of any small, second-order

viscous effects renders the problem well-posed.3.4-8,3.4-10 The whole phenomenon of systems with mixed
orders of derivatives and a first-order system with the addition of a small, second-order term has been

discussed and analyzed by Whitham.3.4-4 He has shown that the second-order viscous terms give infinite
characteristic velocities. However, very little information is propagated along these characteristic lines;
and the bulk of the information is propagated along characteristic lines defined by the first-order system.
We conclude that the ill-posed nature of Equations (3.4-5) through (3.4-8) can be removed by the addition
of small, second-order viscous terms that have little effect upon the propagation of information. Therefore,
the choking criterion for the two-phase flow system analyzed here is established from Equation (3.4-16).

The explicit character of the choking criterion for the two-phase flow model defined by Equations

(3.4-5) through (3.4-8) is examined. Since the two roots, λ1,2, are between the phase velocities, vf and vg,

the choking criterion is established from the roots, λ3,4, and Equation (3.4-16). The choking criterion is

aHE
Cρ2 ρ αgρf αfρg+( )+

Cρ2 ρgρf+
-----------------------------------------------------

1 2⁄

D 0.5 αgρf αfρg–( )
ρC αfρg αgρf+ +( )

-----------------------------------------------
ρgρf αfρf αgρg–( )

ρ ρgρf Cρ2+( )
------------------------------------------- aHE

2 ρ αgρg
2Sg

* αfρf
2Sf

*+( )
ρgρf Sg Sf–( )

-------------------------------------------------–+=

λj
R 0=

λi
R 0≥
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v + D(vg - vf)  =  + a . (3.4-18)

The choking criterion can be rewritten in terms of the mass mean and relative Mach numbers, which
are

(3.4-19)

as

Mv + DMr  =  + 1 . (3.4-20)

This relation is similar to the choking criterion for single-phase flow where only the mass average
Mach number appears and choking corresponds to a Mach number of unity.

The choking criterion [Equation (3.4-20)] is a function of the two parameters, D and a. In Figure

3.4-1, a is plotted as a function of the void fraction, αg, for a typical steam/water system at 7.5 MPa, with C

equal to zero (the stratified equilibrium sound speed), C equal to 0.5 (the typical value for a dispersed flow
model), and in the limiting case when C becomes infinite (homogeneous equilibrium sound speed). From

Figure 3.4-1, it is evident that the virtual mass coefficient has a significant effect upon the choked-flow

dynamics in two-phase flow.3.4-11

To establish the actual choked-flow rate for two-phase flow with slip, the relative velocity term in
Equation (3.4-20) must also be considered. The relative Mach number coefficient, D, is shown plotted in

Figure 3.4-2 for values of C equal to 0, 0.5, and infinity. It is evident from these results that the
choked-flow velocity can differ appreciably from the mass mean velocity when slip occurs. It is significant
that the variation of the choked-flow criterion from the homogeneous result is entirely due to velocity
nonequilibrium, since these results have been obtained under the assumption of thermal equilibrium. The
particular values of these parameters used in the model are further discussed later in this section. 

3.4.1.2  Subcooled Choking Criterion. The previous analysis assumes two-phase conditions
exist throughout the break flow process. However, initially and in the early phase of blowdown, the flow
approaching the break or break nozzle will be subcooled liquid. Under most conditions of interest in LWR
systems, the fluid undergoes a phase change at the break. The transition from single- to two-phase flow is
accompanied by a discontinuous change in the fluid bulk modulus. This is especially true for the
liquid-to-liquid/vapor/gas transition. For example, at 600 kPa, the ratio of the single- to two-phase sound
speed at the liquid boundary is 339.4. This is discussed in Volume IV, Appendix 7A. Thus, considerable
care must be exercised when analyzing a flow having transitions to or from a pure phase. (A discontinuity
is also present at the vapor/gas boundary, but the ratio is only 1.0695.)

Mv
v
a
--- ,                          Mr

vg vf–
a

---------------= =
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Figure 3.4-1 Equilibrium speed of sound as a function of void fraction and virtual mass coefficient.

Figure 3.4-2 Coefficient of relative Mach number for thermal equilibrium flow as a function of void  
fraction and virtual mass coefficient.
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To understand the physical process that occurs for subcooled upstream conditions, consider the flow
through a converging/diverging nozzle connected to an upstream plenum with subcooled liquid at a high
pressure. For a downstream pressure only slightly lower than the upstream pressure, subcooled liquid flow
will exist throughout the nozzle. Under these conditions, the flow can be analyzed using Bernoulli’s

equation, which predicts a minimum pressure, Pt, at the throat.a As the downstream pressure is lowered

further, a point is reached where the throat pressure equals the local saturation pressure, Psat. If the

downstream pressure is lowered further, vaporization will take place at the throat.b When this happens, the
fluid sound speed lowers drastically; but continuity considerations dictate that the velocity, vt, of the

two-phase mixture (at the point of minuscule void fraction) just equals the velocity of the subcooled liquid
slightly upstream of the throat. When this occurs, vt in the subcooled region is less than the liquid sound

speed; but in the two-phase region, vt can be greater than the two-phase sound speed. Hence, the subcooled

liquid has a Mach number (M) < 1, whereas the two-phase mixture at the throat has a Mach number > 1.
Under these conditions (Mach numbers > 1 in the two-phase region), downstream pressure effects are not
propagated upstream and the flow is choked. In particular, the supersonic two-phase fluid at the throat

must increase in velocity, and the pressure must drop as it expands in the diverging section.c (Transition
back to subsonic flow can occur in the nozzle as a result of a shock wave.) This choked condition is shown

as case (a) in Figure 3.4-3. Contrary to the usual single-phase choked flow in a converging/diverging
nozzle, there is no point in the flow field where M = 1. This is because in the homogeneous equilibrium
model the fluid undergoes a discontinuous change in sound speed from single-phase subcooled conditions
to two-phase conditions, although the fluid properties are continuous through the transition point.

When this condition prevails, the flow rate can be established from application of Bernoulli’s

equation . For further decrease in the downstream pressure, no further

increase in upstream fluid velocity will occur as long as the upstream conditions are maintained constant.

Now consider the process where a subcooled choked flow, as described above, initially exists (with a
very low downstream pressure) and the upstream pressure is lowered as shown in cases (b) and (c) in

Figure 3.4-3. As the upstream pressure decreases, the pressure at the throat will remain at Psat, and

Bernoulli’s equation will give a smaller subcooled liquid velocity (vt) at the throat. As Pup is lowered

further, a point is reached where vt = aHE and M = 1 on the two-phase side of the throat. (The Mach

number in the subcooled portion upstream of the throat is much less than 1.) This situation is shown

schematically in Figure 3.4-3 as case (b).

a. For all practical cases of choking, the subcooled liquid can be considered incompressible with infinite sound 

speed.

b. An idealized one-dimensional homogeneous equilibrium model is assumed.

c. In a supersonic flow, a diverging nozzle implies an increase in velocity.

1 2⁄( )ρ vt
2 v– up

2( ) Pup Psat–=[ ]
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As the upstream pressure is lowered further, the point where the pressure reaches Psat must move

upstream of the throat. This is shown as case (c) in Figure 3.4-3. The subcooled liquid velocity at the Psat

location is smaller than the two-phase sound speed, and the flow is subsonic. In the two-phase region
between the point at which Psat is reached and the throat, the Mach number is less than 1 but increases to M

= 1 at the throat; that is, the two-phase sonic velocity is reached at the throat (as in the case of choked flow
having a continuous variation of sound speed with pressure). As Pup is lowered still further, the Psat point

moves upstream until the flow becomes completely two-phase.

The homogeneous assumption applied in the above subcooled choking description is very close to
the real situation when vapor is first formed. However, nonequilibrium can result in a superheated liquid
state at a throat pressure, Pt, much lower than the saturation pressure, Psat. The onset of vaporization occurs

at Pt instead of Psat.

The pressure undershoot, Psat - Pt, can be described by the Alamgir-Lienhard-Jones

correlation,3.4-12,3.4-13 which is

Psat - Pt  =  max (∆P, 0) (3.4-21)

with

Figure 3.4-3 Subcooled choking process.
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. (3.4−22)

The first term in ∆P represents the static depressurization effect and is derived by Alamgir and

Lienhard3.4-13 based on classical nucleation theory. For a steady flow in a nozzle, the depressurization rate,

∑′, can be shown to be

. (3.4-23)

Note that in Equation (3.4-22), ∑′ is in units of Matm/s, but in Equation (3.4-23), ∑′ is in units of

Pa/s. Here,  is the variation of area with respect to axial length and is to be evaluated between the

center of the upstream volume and the throat. The second term in ∆P [Equation (3.4-22)] represents the

turbulence effect and is developed by Jones.3.4-14

The choking velocity, based upon the process shown in Figure 3.4-3, can be obtained in the
following manner. The subcooled critical flow model is based on the assumption that flashing occurs at the
throat of the nozzle or upstream of the throat. This assumption implies that critical flow of subcooled liquid

must be accompanied by a minimum pressure drop, which we denote by ∆Pmin. In this case ∆Pmin = Pup -

Pt, where Pup is the pressure in the upstream volume and Pt is the throat pressure obtained from the

Alamgir-Lienhard-Jones correlation. This leads to a condition on the fluid velocity at the throat, which is
obtained from the Bernoulli equation. Assuming the fluid is incompressible and that frictional and

gravitational forces are negligible, the Bernoulli equation is given by , where ∆P is

the pressure drop from the upstream volume to the throat, vt is the velocity at the throat, and vup is the

velocity in the upstream volume. Thus we obtain the condition vt > vc, where

(3.4-24)

and Pt is to be computed from Equation (3.4-21).

For the process shown in Figure 3.4-3 case (a), the choking velocity is given by Equation (3.4-24).

For the processes shown in Figure 3.4-3 case (b) and Figure 3.4-3 case (c), the two-phase choking
criterion applies, and the choking velocity is given by

∆P 0.258σ3 2⁄ TR
13.76 1 13.25RΣ′0.8+( )

1 2⁄

kBTc( )1 2⁄ 1 Vf
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vc  =  aHE (3.4-25)

where aHE is the equilibrium sound speed of a two-phase mixture.

To determine which of the above situations exists, both vc’s are calculated, and the larger is used as

the choking velocity to be imposed at the throat. This velocity is imposed numerically in exactly the same
way as the choking criterion used for the two-phase condition described previously.

The equilibrium sound speed, aHE, is calculated using thermodynamic conditions at the throat.

Momentum and mechanical energy balances are used to calculate the pressure and specific internal energy
at the throat and use the thermodynamic property tables to obtain the thermodynamic properties of a
saturated liquid-vapor mixture at this pressure and specific internal energy. This method is consistent with
the process of subcooled critical flow described in this section, and allows for the presence of a two-phase
mixture at the throat. The precise equations used to determine the hydrodynamic conditions at the throat
are presented in Volume IV. Note that in an earlier version of ATHENA, the quality of the two-phase
mixture at the throat was not determined. Instead the throat was assumed to contain saturated liquid at the
temperature of the subcooled liquid upstream. However, this assumption led to an abrupt change of the
computed flowrate at the single-phase to two-phase transition.

The subcooled choking model is very similar in concept to the model proposed by Burnell3.4-15 in
that both models assume a Bernoulli expansion to the point of vapor inception at the choke plane. The
criterion for transition from subcooled choking to two-phase choking is now better understood and is in
agreement with the physics of two-phase flow. The model here is also in agreement with cavitating venturi

experience (experimentally confirmed behavior)3.4-12. The ATHENA subcooled choking model is

somewhat different than the model proposed by Moody3.4-16 in that the Moody model assumes that an
isentropic process occurs to the choke plane.

3.4.1.3  Implementation of Choked Flow Model. Ideally, the two-phase choking criterion
[Equation (3.4-18)] can be used as a boundary condition for obtaining flow solutions. However, the
applicability of Equation (3.4-18) has not been fully explored. Instead, an approximate criterion given by

(3.4-26)

has been applied extensively and has produced good code/data comparisons. Equation (3.4-26) can be

obtained from Equation (3.4-18) in the following manner3.4-18. Neglecting the third term in D, we obtain

αgρfvg αfρgvf+
αgρf αfρg+

--------------------------------------  aHE±=
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(3.4-27)

Then setting C = 0 (stratified) on the left side of Equation (3.4-27) and C = ∞ (homogeneous) on the
right side of Equation (3.4-27) and computing the limits, we obtain the approximate criterion given by
Equation (3.4-26). Because of the extensive experience with this approximate model, Equation (3.4-26) is
currently used in ATHENA choked flow calculations.

In the ATHENA critical flow model, choking is assumed to occur at the narrowest part of the flow
channel. This location is called the throat. Under critical flow conditions, the fluid velocity at the throat is
equal to the two-phase speed of sound. The critical flow model includes two separate tests to determine if
critical flow occurs: a choking test to determine if the hydrodynamic conditions lead to critical flow, and
an unchoking test to determine if the hydrodynamic conditions can maintain critical flow. In the choking
test [Equation (3.4-26)], the fluid velocity is compared to the local speed of sound, which is based on the
hydrodynamic conditions at the throat. In the unchoking test, a momentum balance from the upstream
volume center to the throat is used to determine whether the pressure drop is large enough to sustain
choked flow. Ideally, choked flow occurs only if the fluid velocity exceeds the local speed of sound and the
minimum pressure drop condition is satisfied. In the current implementation of the critical flow model,
however, these conditions are relaxed so that choked flow occurs if either of the conditions in the previous
sentence is true in order to prevent the computed solution from oscillating at the threshold between sonic
and subsonic flow. The precise logic used to determine critical flow and a flowchart of the algorithm is
presented in Volume IV.

At each time step and at each flow junction where two-phase cocurrent flow exists, the choking criterion
[Equation (3.4-26)] is checked using explicitly calculated values. When choking occurs, Equation (3.4-26)
uses new-time phasic velocities for vg and vf; it uses the throat pressure Pt to evaluate the old time sound

speed aHE,j. In Equation (3.4-26), the right hand side term  is approximated by

(3.4-28)

where PK is the upstream volume pressure. As Pt is not needed in system calculations, we can eliminate

 from the vapor/gas and liquid momentum equations (see Volume IV) to obtain

αgρgvg αfρfvf+
ρ

-------------------------------------- 0.5 αgρf αfρg–( )
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0.5

  .±=

aHE j,
n 1+

aHEj
n 1+ aHEj

n ∂aHE

∂P
----------- 

 
j

n
PK

n 1+ PK
n–( )+=

∂P
∂x
------
INEEL-EXT-98-00834-V1 3-186



ATHENA/2.3
(3.4−29)

The finite-difference form of this equation is obtained by integrating with respect to the spatial variable
from the upstream volume center to the junction. In this finite-difference equation, all junction velocities

are evaluated implicitly.3.4-18 . The HLOSSGj and HLOSSFj terms (code-calculated abrupt area change

loss terms and user-defined loss terms) are not present in the finite-difference equation, because these
losses are primarily important downstream of the junction. The finite-difference equations corresponding

to Equations (3.4-26) and (3.4-29) can be solved for  and  in terms of  and old time values.

The unchoking test may be explained by reference to Figure 3.4-4, which illustrates the effect of
downstream pressure on choked flow through a typical converging-diverging nozzle. In this case, a
necessary condition for choked flow is PK > Pt, where Pt is the pressure at the throat and PK is the pressure

in the upstream volume. The term M is the Mach number. However, we may have Pt > PL or Pt < PL,

where PL is the pressure in the downstream volume. In some cases, shocks may occur in the diverging

portion of the nozzle in order that the pressure of the fluid leaving the nozzle matches the downstream

pressure. For choking we also require max(Pt, PLcrit) > PL where PLcrit = PK - ∆Pmin and ∆Pmin, is a

minimum pressure difference needed to maintain choked flow. The quantity ∆Pmin is calculated from a

momentum balance which includes the effects of the variation of flow area, wall friction, and form loss. In
particular, the calculation includes the following sequence of steps: (1) Use momentum and energy
balances from the upstream volume center to the throat in order to obtain Pt and Ut. (2) Use the

thermodynamic property tables to determine the thermodynamic state at the throat from which the
two-phase sound speed is obtained. (3) Assuming the fluid velocity at the throat is equal to the two-phase
sound speed, use a momentum balance from the upstream volume center to the downstream volume center
in order to obtain the pressure drop due to a change in flow area, wall friction, and form loss downstream
of the expansion. (This is a minimum pressure drop needed to sustain choked flow. We note that the static
pressure increases in the diverging section of the nozzle because the fluid decelerates, but the total pressure
decreases due to friction and form losses.) (4) Test for unchoking by comparing the actual pressure drop to
the minimum pressure drop. We can justify this test by observing that for choked flow, an increase in the
downstream pressure eventually leads to unchoking, and the critical value of the downstream pressure is

PK - ∆Pmin. This test is especially important for critical flow of subcooled liquid though an abrupt area

change. Since an abrupt area change is accompanied by form loss downstream of the throat, the pressure
drop must be large enough to accelerate the liquid to sonic velocity at the throat and overcome the form
loss downstream of the throat.

ρg
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In general, there is a large drop in critical velocity when the fluid changes from a subcooled to a
two-phase state. This sudden change often leads to unrealistic velocity oscillations and causes the time step
to be reduced considerably. To provide a smooth transition from subcooled to two-phase, a transition

region (transition region 1) is inserted between subcooled choking  and two-phase choking

 in which the sound speed is interpolated between the subcooled choking sound speed and

the two-phase sound speed, based on the donored value of the junction void fraction, . The subcooled

sound speed is computed from Equation (3.4-24) using a void fraction of 1.0 x 10-5, and the two-phase
sound speed is computed from thermodynamic relations using the homogeneous equilibrium model using a
void fraction of 0.10. A void fraction of 0.10 was chosen so that it would require several time steps to
traverse the interpolation region based on typical time step sizes and typical rates to change of void fraction
per time step. To provide additional smoothing of the transition between subcooled and two-phase
choking, the phase velocities obtained from the choking computation [i.e., the simultaneous solution of
Equation (3.4-26) and the finite difference form of Equation (3.4-29)] are relaxed with the values from the
previous time step, using a variable relaxation factor. The velocities are given by

(3.4-30)

(3.4-31)

where

Figure 3.4-4 Pressure distribution for choked flow through a converging-diverging nozzle.
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R = 0.1 for 

= 0.9 for (3.4-32)

and the relaxation factor R is interpolated between the two values of the junction void fraction. The region
between 0.10 and 0.15 is transition region 2. A variable relaxation factor in transition region 2 is used to
reduce the numerical noise that would result from an abrupt switch from the heavy under-relaxation in
transition region 1 to very little under-relaxation for void fraction above transition region 2. This is
discussed in further in Volume IV, Section 7.2.4.

3.4.2  Stratification Entrainment/Pullthrough Model

Under stratified conditions in horizontal and vertical components, the void fraction flowing through a
junction may be different from the upstream volume void fraction. Consequently, the regular donoring
scheme for the junction void fraction is no longer appropriate because vapor/gas may be pulled through the
junction and liquid may also be entrained and pulled through the junction. 

3.4.2.1  Horizontal Volumes. A model for this process of vapor/gas pullthrough and liquid

entrainment for various conditions for horizontal volumes was developed by Ardron and Bryce3.4-19 and

implemented by Bryce.3.4-20 This model is sometimes referred to as the offtake model. The correlation for
the onset of pullthrough or entrainment is given by

(3.4-33)

where

hb = the distance between the stratified liquid level and the junction at which

pullthrough or entrainment first begins (i.e., the inception height) 

Wk = mass flow rate of the continuous phase k in the branch

ρk = density of the continuous phase k in the branch

and K is a constant defined as follows: for a vertically upward branch, K = 1.67; for a vertically downward
branch, K = 1.50; for vapor/gas pullthrough in a horizontal side branch, K = 0.75; and for liquid
entrainment in a horizontal side branch, K = 0.69.

Once the liquid level is closer to the junction than the inception height, the flow quality through the
junction is given by the following set of correlations:

For a vertically upward branch,

α· g j, 0.10≤

α· g j, 0.15≥

hb
KWk

0.4

gρk ρf ρg–( )[ ]0.2
----------------------------------------=
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(3.4-34)

where

R =

h = distance from the stratified liquid level to the junction.

For a vertically downward branch,

(3.4-35)

For a horizontal side branch,

(3.4-36)

where

Xo =  , (3.4-37)

C = 1.09 for gas pullthrough, and C = 1.00 for liquid entrainment. The flow quality is converted into a
junction void fraction using the slip ratio in the junction from the previous time step.

The calculation of the junction void fraction is subject to several limitations to handle special
situations (e.g., inception height greater than pipe radius for side branch or greater than pipe diameter for
vertical branches) and to eliminate oscillations that would cause the time step to be reduced, thereby
increasing code run time. The details of the implementation of the stratification entrainment/pullthrough

model for horizontal volumes can be found in Volume IV of this manual, in Ardron and Bryce,3.4-19 and in

Bryce.3.4-20

3.4.2.2  Vertical Volumes. The entrainment/pullthrough model described above was developed
for stratified flow in horizontal volumes. With the implementation of the mixture tracking model, the code
is able to model stratified flow in vertical volumes. The control logic for the entrainment/pullthrough
model for horizontal volumes was modified to allow for the entrainment/pullthrough at junctions attached
to the sides of ’vertical’ volumes. Vertical volumes are defined as one-dimensional volumes whose
primary flow direction (i.e., the ’x’ direction) is oriented in the vertical direction or as volumes in the
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multi-dimensional component where the ’z’ direction is oriented in the vertical direction. If a junction is
attached to the ’y’ or ’z’ faces of a one-dimensional vertical volume or the ’x’ or ’y’ faces of a volume in
the multi-dimensional component, the user may designate the junction as a ’side offtake’ junction which
activates the entrainment/pullthrough logic for side branches as described in the previous sections. The
side junction is assumed to be attached the vertical volume at an elevation of half of the height of the
vertical volume and the height of the stratified level relative to the side junction is determined by the
two-phase level model.

3.4.3  Abrupt Area Change

The general reactor system contains piping networks with many sudden area changes and orifices. To
apply the ATHENA hydrodynamic model to such systems, analytical models for these components have

been developed.3.4-21 The basic hydrodynamic model is formulated for slowly varying (continuous) flow
area variations; therefore, special models are not required for this case.

The abrupt area change model, discussed here and developed in detail in Reference 3.4-21, is based

on the Borda-Carnot3.4-22 formulation for a sudden (i.e., sharp, blunt) enlargement and standard pipe flow
relations, including the vena-contracta effect for a sudden (i.e., sharp, blunt) contraction or sharp-edge
orifice or both. It does not include the case where an enlargement contraction or orifice is rounded or
beveled. Quasi-steady continuity and momentum balances are employed at points of abrupt area change.
The numerical implementation of these balances is such that hydrodynamic losses are independent of
upstream and downstream nodalization. In effect, the quasi-steady balances are employed as jump
conditions that couple fluid components having abrupt changes in cross-sectional area. This coupling
process is achieved without change to the basic linear semi-implicit and nearly-implicit numerical
time-advancement schemes.

3.4.3.1  Abrupt Area Change Modeling Assumptions. The basic assumption used for the
transient calculation of two-phase flow in flow passages with points of abrupt area change is: the transient
flow process can be approximated as a quasi-steady flow process that is instantaneously satisfied by the
upstream and downstream conditions (that is, transient inertia, mass, and energy storage are neglected at
abrupt area changes). However, the upstream and downstream flows are treated as fully transient flows.

There are several bases for the above assumption. A primary consideration is that available loss

correlations are based on data taken during steady flow processes; however, transient investigations3.4-23

have verified the adequacy of the quasi-steady assumption. The volume of fluid and associated mass,
energy, and inertia at points of abrupt area change is generally small compared with the volume of
upstream and downstream fluid components. The transient mass, energy, and inertia effects are
approximated by lumping them into upstream and downstream flow volumes. Finally, the quasi-steady
approach is consistent with modeling of other important phenomena in transient codes (that is, heat
transfer, pumps, and valves).

3.4.3.2  Review of Single-Phase Abrupt Area Change Models. The modeling techniques
used for dynamic pressure losses associated with abrupt area change in single-phase flow are reviewed
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briefly before discussing the extension of these methods to two-phase flows. In a steady incompressible
flow, losses at an area change are modeled by the inclusion of an appropriate dynamic head loss term, hL,

in the one-dimensional modified Bernoulli equation, that is

(3.4-38)

where hL is of the form hL = (1/2) Kv2. The particular form of the dynamic head loss is obtained by

employing the Borda-Carnot3.4-22 assumption for calculating losses associated with the expansion part of
the flow process at points of abrupt area change.

For the case of a one-dimensional branch, apportioned volume areas are calculated. This is discussed
in Section 3.5.1.

3.4.3.2.1  Expansion--Consider a steady and incompressible flow undergoing a sudden
increase in cross-sectional area (expansion) as shown in Figure 3.4-5. Here the flow is assumed to be from
left to right with the upstream conditions denoted by the subscript 1 and the downstream condition by 2.
Here the upstream and downstream conditions are assumed to be far enough removed from the point of
area change that flow is one-dimensional, i.e., none of the two-dimensional effects of the abrupt area
change exist. These locations can range from several diameters upstream to as many as 30 diameters
downstream. However, for purposes of modeling the overall dynamic pressure loss, the entire process is
assumed to occur as a discontinuous jump in flow condition at the point of abrupt area change. In this
context, the stations 1 and 2 refer to locations immediately upstream and downstream of the abrupt area
change.

 

Figure 3.4-5 Abrupt expansion.
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The dynamic head loss for the abrupt expansion shown in Figure 3.4-5 can be obtained using the

Borda-Carnot3.4-22 assumption, i.e., the pressure acting on the “washer shaped” area, A2 - A1, is the

upstream pressure, P1. When this assumption is employed in an overall momentum balance, the head loss

is

. (3.4-39)

The loss in the dynamic pressure associated with the area change is related to the head by

. (3.4-40)

3.4.3.2.2  Contraction--The flow process at a point of abrupt reduction in flow area
(contraction) is idealized in much the same manner as for the expansion, except that an additional process
must be considered. The flow continues to contract beyond the point of abrupt area reduction and forms a
vena contracta, see Figure 3.4-6. The point of vena contracta is designated by c. The far-upstream and
far-downstream conditions are designated by 1 and 2, respectively.

Consider a sudden contraction in a steady incompressible flow. The loss in dynamic pressure from

the upstream station to the vena contracta is the smaller part of the total loss. Measurements3.4-22 indicate

Figure 3.4-6 Abrupt contraction.
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ATHENA/2.3
that the contracting flow experiences a loss no larger than , where

vc is the velocity at the contracta. This loss is at most 24% of the total loss and is neglected in ATHENA.

The dynamic pressure loss associated with the new expansion from the area at the vena contracta to the
downstream area is modeled using the Borda-Carnot assumption with the condition at the vena contracta as
the upstream condition, that is

, (3.4-41)

where from continuity considerations for incompressible flow

. (3.4-42)

The contraction ratio, , is a function of . This is based on a synthesis of analytical approaches

and generally accepted experimental information.3.4-22 The function in Reference 3.4-22 is in the form of

a table. This table has been approximated in ATHENA as the function equation .

Volume IV discusses this approximation in more detail.

Combining Equations (3.4-41) and (3.4-42) leads to

(3.4-43)

as the dynamic pressure loss for a contraction.3.4-22

3.4.3.2.3  Abrupt Area Change With an Orifice--The most general case of an abrupt area
change is a contraction with an orifice at the point of contraction. Such a configuration is shown in Figure
3.4-7. In this case, an additional flow area, the orifice flow area, must be specified. Conditions at the orifice
throat station will be designated by a subscript T. Three area ratios are used throughout this development.
The first is the contraction area ratio at the vena-contracta relative to the minimum physical area,

. The second is the ratio of the minimum physical area to the upstream flow area, . The

third is the ratio of the downstream to upstream area, . 
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ATHENA/2.3
The dynamic pressure loss for an abrupt area contraction combined with an orifice is analyzed in a
manner parallel to that for a simple contraction. The loss associated with the contracting fluid stream from
Station 1 to c (the point of vena-contracta) is neglected. The dynamic pressure loss associated with the
expansion from the vena-contracta to the downstream section is given by

. (3.4-44)

The contraction ratio, , is a function of . The code uses the same function equation

as is used for a contraction. The function equation εc has the form εc = 0.62 + 0.38 (εT)3. Using the

continuity equations,  and , Equation (3.4-44) can be written as

(3.4−45)

where Kf  =  Kg  =  .

Equation (3.4-45) is a generalization applicable to all the cases previously treated. For a pure

expansion, εT = 1, εc = 1, and ε > 1; for a contraction, εT = ε < 1 and εc < 1. Each of these is a special case

of Equation (3.4-45).

Figure 3.4-7 Orifice at abrupt area change.
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The two-phase dynamic pressure loss model is based on an adaptation of the general single-phase
head loss given by Equation (3.4-45). It is described is the next section.

3.4.3.3  Two-Phase Abrupt Area Change Model. The two-phase flow through an abrupt area
change is modeled in a manner very similar to that for single-phase flow by defining phasic flow areas.
The two phases are coupled through the interphase drag, a common pressure gradient, and the requirement
that the phases coexist in the flow passage. As with the single-phase case, apportioned volume areas are
calculated for a one-dimensional branch. This is discussed in Section 3.5.1.

The one-dimensional phasic stream-tube momentum equations are given in Section 3.1.1. The flow
at points of abrupt area change is assumed to be quasi-steady and incompressible. In addition, the terms in
the momentum equations due to body force, wall friction, and mass transfer are assumed to be small in the
region affected by the area change. The interphase drag terms are retained, since the gradient in relative
velocity can be large at points of abrupt area changes. The interphase drag is increased for co-current
horizontal stratified abrupt area changes in order to ensure more homogeneous flow.

Equations (3.1-7) and (3.1-8) can be integrated approximately for a steady incompressible, smoothly
varying flow to obtain modified Bernoulli-type equations for each phase, that is

(3.4-46)

and

(3.4-47)

where L1 and L2 are the lengths from the upstream condition to the throat and from the throat to the

downstream condition respectively and where . The term FI is determined from

Equation (3.3-47). The interphase drag is divided into two parts, which are associated with the upstream
and downstream parts of the flow affected by the area change.

3.4.3.4  General Model. Consider the application of Equations (3.4-46) and (3.4-47) to the flow of
a two-phase fluid through a passage having a generalized abrupt area change. The flow passage is shown in

Figure 3.4-8.a Here, the area AT is the throat or minimum area associated with an orifice located at the

point of the abrupt area change. Since each phase is governed by a modified Bernoulli-type equation, it is
reasonable to assume that losses associated with changes in the phasic flow area can be modeled by
separate dynamic pressure loss terms for both the liquid and vapor/gas phases. Hence, it is assumed that the
liquid sustains a loss as if it alone (except for interphase drag) were experiencing an area change from αf1

A1 to αfT AT to αf2 A2; and the vapor/gas phase experiences a loss as if it alone were flowing through an

area change from αgl A1 to αgT AT to αg2 A2. The area changes for each phase are the phasic area changes
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(see Figure 3.4-8). When the losses for these respective area changes [based on the Borda-Carnot model
and given by Equation (3.4-45)] are added to Equations (3.4-46) and (3.4-47), the following phasic
momentum equations are obtained: 

(3.4-48)

and

(3.4-49)

a. In Figure 3.4-8, the flow is shown as a separated flow for clarity. The models developed are equally 

applicable to separated and dispersed flow regimes, as evidenced by the calculations performed when the 

abrupt area change model was incorporated into ATHENA.3.4-21 The model was verified on single-phase 

expansions, contractions, and orifices. Three two-phase problems were also run: (1) expansion case with the 

interphase drag equal to zero, which simulates separated flow, (2) expansion case with the interphase drag 

appropriate for dispersed flow, and (3) contraction case with the interphase drag appropriate for dispersed 

flow.

Figure 3.4-8 Schematic flow of two-phase mixture at abrupt area change.
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where .

These phasic momentum equations are used across an abrupt area change. In Equations (3.4-48) and

(3.4-49), εfc and εgc are the same tabular function of area ratio as in the single-phase case, except the area

ratios used are the phasic area ratios, given by

(3.4−50)

and

(3.4−51)

respectively. The area ratios,  and , are the same as for single-phase flow.

The  terms in Section 3.1.3 momentum Equations (3.1-104) and

(3.1-105) are of the form , where

 and  are defined after Equations (3.4-48) and (3.4-49). The user-specified loss coefficient Kin is

discussed in Section 3.4.4.

The interphase drag effects in Equations (3.4-48) and (3.4-49) are important. These terms govern the
amount of slip induced by an abrupt area change; and, if they are omitted, the model will always predict a
slip at the area change appropriate to a completely separated flow situation and give erroneous results for a
dispersed flow.

3.4.3.5  Model Application. A few remarks concerning the way Equations (3.4-48) and (3.4-49)
are applied to expansions and contractions, both with and without an orifice, are necessary. In a
single-phase, steady flow situation and given the upstream conditions v1 and P1, one can solve for v2 and

P2 by using the continuity equation (v1A1 = v2A2) and Equation (3.4-38). Equations (3.4-48) and (3.4-49),

along with the two phasic continuity equations, can be used in a similar manner except that now the
downstream void fraction is an additional unknown which must be determined.

3.4.3.5.1  Expansion--For the purpose of explanation, consider the case of an expansion (αfT

= αf1, αgΤ = αg1, ε > 1, εT = 1, εfc = εgc = 1, , L1 = 0) for which Equations (3.4-48) and (3.4-49)

reduce to
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(3.4-52)

and

. (3.4-53)

These two equations with the two incompressible continuity equations, given by

αf1vf1A1  =  αf2vf2A2 (3.4-54)

and

αg1vg1A1  =  αg2vg2A2 (3.4-55)

are a system of four equations having four unknowns, αf2 (αg2 = 1 - αf2), vf2, vg2, and P2, given the

upstream conditions, αf1 (αg1 = 1 - αf1), vf1, vg1, and P1. (The interphase drag, , is a known function of

the flow properties.) It is important to note that the downstream value of the liquid fraction (αf2) is an

additional unknown compared with the single-phase case and is determined (with the downstream
velocities and pressure) by simultaneous solution of Equations (3.4-52) through (3.4-55) without
additional assumptions. It is reassuring that by taking a proper linear combination of Equations (3.4-48)

and (3.4-49), the usual overall momentum balance obtained using the Borda-Carnot3.4-22 assumption can

be obtained.3.4-24,3.4-25

If, as in the cited literature,3.4-24,3.4-25,3.4-26,3.4-27 only the overall momentum balance is used at an
expansion, there will be an insufficient number of equations to determine all the downstream flow

parameters, αf2, vf2, vg2, and P2. The indeterminacy has been overcome in cited works by means of several

different assumptions concerning the downstream void fraction.a In the model developed here [Equations
(3.4-52) and (3.4-53)], division of the overall loss into liquid and vapor/gas parts, respectively, results in

sufficient conditions to determine all downstream flow variables, including αf2. In addition, the present

model includes force terms due to interphase drag in Equations (3.4-52) and (3.4-53), which are necessary
to predict the proper amount of slip and void redistribution that occurs at points of area change.

a. J. G. Collier3.4-24 mentions three different assumptions that have been used: (1) af2 = af1, (2) af2 is given by a 

homogeneous model, and (3) af2 is given by the Hughmark void fraction correlation.
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3.4.3.5.2  Contraction--Consider the application of Equations (3.4-48) and (3.4-49) to a
contraction. To determine both the downstream conditions and throat conditions from the upstream values
of αf1(αg1), vf1, vg1, and P1, an additional consideration needs to be made. To obtain the throat values,

apply the momentum equations valid for the contracting section of flow (where the L1 portion of the

interphase force is associated with the contraction). This results in

(3.4-56)

 . (3.4-57)

The two incompressible continuity equations are

αf1vf1A1  =  αfTvfTAT (3.4-58)

αg1vg1A1  =  αgTvgTAT . (3.4-59)

These four equations are solved simultaneously for the values of αfT(αgT), vfT, vgT, and PT at the

throat section (the minimum physical area). No additional or special assumptions are made concerning the
throat conditions, since they follow as a direct consequence of the unique head loss models for each phase.
After the throat values have been obtained, the conditions, at the point of vena-contracta are established,

assuming the void fraction is the same as at the throat. Thus, εfc and εgc are established using the

single-phase contraction function equation and the throat area ratios, εfT and εgT, defined by Equations

(3.4-50) and (3.4-51). The functions are εfc = 0.62 + 0.38(εfT)3 and εgc = 0.62 + 0.38(εgT)3. To determine

the downstream values, Equations (3.4-48) and (3.4-49) can be applied directly from Stations 1 to 2 with
the throat values known, or the expansion loss equations can be used from the throat section to Station 2.
Both approaches produce identical downstream solutions. As in the case of an expansion, because the
proper upstream and downstream interphase drag is included, this modeling approach establishes the phase
slip and resulting void redistribution. An orifice at an abrupt area change is treated exactly as the
contraction explained above (that is, with two separate calculations to establish first the throat and then the
downstream flow variables).

3.4.3.5.3  Countercurrent Flow--The preceding development implicitly assumed a
cocurrent flow. For countercurrent flow, Equations (3.4-48) and (3.4-49) are applied exactly as in
cocurrent flow except that the upstream sections for the respective phases are located on different sides of
the abrupt area change. The difference appears in how the throat and downstream volume fractions are
determined. To determine the throat properties, equations similar to Equations (3.4-56) through (3.4-59)
are used with the upstream values appropriate for each phase. These four equations are then solved for
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αfT(αgT), vfT, vgT, and PT. To determine the downstream values for each phase, only the head loss terms

are needed for the downstream volume fractions. (The downstream vf, vg, and P do not appear.) For

countercurrent flow, these volume fractions are set such that the downstream volume fraction of each
phase plus the upstream volume fraction of the opposite phase adds to 1. (Both phases together must fill
the flow channel.) With the throat and downstream volume fractions now known, Equations (3.4-48) and
(3.4-49) can be used directly to determine the total loss for each phase at the abrupt area change.

3.4.4  User-Specified Form Loss

In the calculation of the total form loss, partitioning of the form friction losses between the liquid and
the vapor/gas phases are implemented based on the phasic volume fractions. However, there are many
practical situations for the users of using flow condition dependent form loss coefficients in order to
represent the friction loss close to experimental values. This section documents the implementation of the
general user-specified form loss coefficients.

The  and  terms in Section 3.1.3 momentum Equations (3.1-104) and

(3.1-105) are of the form

(3.4-60)

(3.4-61)

where the user-specified loss term Kin is either the forward (KF) or reverse (KR) inputted user-specified

loss, depending on the phasic velocity direction. The code-calculated abrupt area loss terms  and  are

discussed in Section 3.4.3.

In many cases the form loss coefficient is a function of the Reynolds number. Thus it is suggested
that the user-specified form loss coefficients can be generally expressed as

(3.4-62)

(3.4-63)

where KF and KR are the forward and reverse user-specified form loss coefficients; AF, AR, BF, BR, CF,

and CR are the constants that are user-specified and Re is the Reynolds number based on mixture fluid

properties. To prevent a divide by a small number or a potential divide by zero in low speed flow, the
Reynolds number is limited to values greater than or equal to 50 as is done in the wall friction model (see
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Volume IV). There are several different ways of defining the mixture Reynolds number based on the way

the mixture viscosity is computed.3.4-28 In ATHENA, the mixture viscosity µm defined by Cicchitti3.4-29 is

implemented for calculating the mixture Reynolds number, and is given by

µm  =  X µg + (1 - X) µf (3.4-64)

where µg is the vapor/gas viscosity, µf is the liquid viscosity, and X is the static quality. The mixture

Reynolds number is then computed from

(3.4-65)

3.4.5  Crossflow Junction

The ATHENA numerical scheme is generally formulated using one-dimensional elements. However,
there are several applications where an approximate treatment of crossflow provides an improved physical
simulation. This is discussed further in Volume II. Three different applications for a crossflow formulation
are described in the following paragraphs.

The first application concerns a small crossflow between two essentially axial flow streams. This
situation is typical of regions such as a reactor core or a steam generator, because the component geometry
provides a large resistance (i.e., small flow rate) to crossflow and a small resistance (i.e., large flow rate) to
axial flow. Hence, simplified crossflow momentum equations can be used to couple a hot flow channel to a
bulk flow channel.

The second application of a crossflow junction is to provide a tee model. In this case, the momentum
flux in the side branch is assumed to be perpendicular to the main stream; thus, the main stream
momentum flux does not contribute to the crossflow momentum formulation.

The third application is modeling of leak flow paths. In this case, the flow is small and governed
primarily by pressure differential, gravity, and flow resistance.

The vapor/gas momentum finite difference equation used in the basic numerical scheme is

(3.4-66)
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where

∆xj = . (3.4-67)

A parallel equation holds for the liquid phase. It should be noted that the momentum Equation
(3.4-66) is in reality the sum of half the K cell momentum plus half the L cell momentum. This is the
reason for Equation (3.4-67).

In crossflow junctions, just as in the normal junctions, the transverse momentum advection terms are
neglected, i.e., there is no transport of x-direction momentum due to the flow in the transverse direction.

For the case of a small crossflow junction between two axial flow streams (J2 in Figure 3.4-9) all the

geometric input (area, length, elevation change) for both of the volumes relates to the axial flow direction,
as do the wall drag and code-calculated form losses.

The crossflow area and the length scale can be either user-specified or code-calculated values. When
code-calculated values are used, the volume geometries are defaulted for the case of a cylindrical pipe, and
the appropriate length scale and flow area are used in the code. When user-specified values are used, the
user should provide the representative crossflow area and length scale in the input deck. The length scale
can be calculated as the volume divided by the crossflow area.

Since the connecting K and L volumes are assumed to be predominantly axial flow volumes, the
crossflow junction momentum flux (related to the axial volume velocity in K and L) can be neglected (by
using a junction flag) along with the associated numerical viscous term.

Figure 3.4-9 Modeling of crossflows or leak.
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The resulting vapor/gas momentum finite difference equation (when the momentum flux is neglected
using a junction flag) for a crossflow junction between two axial flow streams is

(3.4-68)

A similar equation can be written for the liquid phase. The ∆xj term that is used to estimate the

inertial length associated with crossflow is defined using the diameters of volumes K and L, is given by

(3.4-69)

if the default is used. If user-specified lengths are input, they are used instead of D(K) and D(L).

The crossflow option can be used with the crossflow junction perpendicular to the axial flow in

volume L (or K) but parallel to the axial flow in volume K (or L) (see Figure 3.4-10). Here, the situation
regarding the half cell momentum contribution in volume L is the same as described above. The half cell
momentum contribution associated with volume K is the same as for a normal junction. This type of
crossflow modeling can be used for a 90-degree tee simulation.

Figure 3.4-10 Simplified tee crossflow.
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The resulting vapor/gas momentum finite difference equation for a crossflow junction perpendicular
to the axial flow in volume L but parallel to the axial flow in volume K is

(3.4-70)

where the momentum flux in volume L is neglected by using a junction flag.

A similar equation can be written for the liquid phase. The ∆xj term has the form 

(3.4-71)

if the default is used. If a user-specified length is input for the L volume, it is used instead of D(L).

For leak flows and minor flow paths, the modeling approach shown in Figure 3.4-11 is
recommended. Here, J3 is the normal flow path, whereas junction J1, volume M, and junction J2 represent

the leak flow path. Junctions J1 and J2 should be modeled as tee junctions described above. The only

reason for using volume M is to obtain a correct representation of the gravity head from K to L. If a
crossflow junction were modeled directly between volumes K and L, then there would be no gravity head
in the leak flow junction equation. Leak paths may also be modeled using a crossflow junction that is
perpendicular to both the K and L volumes when the leak flow is between volumes having the same
volume center elevation.

3.4.6  Water Packing Mitigation Scheme

Large pressure spikes that cannot be explained by known physical phenomena are at times
encountered when Eulerian-type computer codes are used to analyze integral systems tests or reactor
accidents. These fictitious pressure spikes are sometimes calculated when vapor/gas is disappearing from,
and liquid is about to fill, a control volume. The situation is often referred to as water packing. This section
discusses the situation for water packing where water is the working fluid. These same equations are used
in ATHENA when other working fluids are specified.

The cause of the anomalous pressure spikes is the discontinuous change in compressibility between a
two-phase mixture of small void fraction and a pure liquid phase, and approximations inherent in the
discrete momentum equations. The same problems are seen using a two-fluid model or the homogeneous
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equilibrium model. Consider the homogeneous equilibrium case and a cell that is nearly full of liquid with
a net influx of mass. The density-pressure relationship used to calculate the new time pressure is based
upon the beginning of time step values for the state properties and derivatives. The compressibility of this
low void fraction cell is dominated by the mass transfer. The equivalent mixture corresponds to a highly
compressible fluid, i.e., significant volume changes can easily occur with very little change in pressure.
This high compressibility can allow significant continuing influx of liquid with very little pressure rise. In
fact, in some cases the net volume influx of liquid during the time step can be larger than the initial
vapor/gas volume in the cell. This filling of the cell is accompanied by only slight pressure changes. This
small change in pressure may do little to slow down or reverse the liquid influx momentum. If this is the
case, the following time step will be taken with a liquid full cell and large liquid influx momentum existing
at the beginning of the time step. Because the liquid is nearly incompressible, this large influx of liquid
momentum will cause a large increase in pressure during this following time step.

In the neighborhood of these spurious numerical pressure spikes, the calculated phasic velocities may
increase substantially, and smaller time-step sizes are needed to satisfy the material Courant stability limit.
Thus, the computational efficiency is greatly reduced by the presence of water packing. Of course, the
computed pressure spikes are unphysical. Furthermore, water packing may severely distort the transient
solution by changing the void distribution or driving the liquid completely out of an open system.

A water packing scheme has been installed to mitigate these spikes. The water packing scheme

closely follows the method used in the TRAC code.3.4-30,3.4-31 It involves a detection scheme to determine
when a pressure change occurs in a volume containing mostly liquid. It then imposes changes to the liquid
momentum equation, followed by a recalculation of the time step with the same time step size.

The detection logic used in the water packing scheme evolved from experience gained in running a

vertical fill problem.3.4-32 The detection logic requires the following formula for the pressure:

Figure 3.4-11 Leak flow modeling.
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(3.4-72)

where volume K is the volume that water packs and volume L is the next volume (see Figure 3.4-12). In

volume K, the detection scheme also requires a void fraction (αg) < 0.12, the liquid temperature (Tf) to be

less than the saturation temperature (Ts), the volume to be flagged as vertically stratified, and the next
volume above to be highly voided. Thus, a legitimate water hammer situation would not be eliminated by
the water packing scheme.

The next part of the scheme involves altering the liquid momentum equation so that only small
pressure changes will occur when the volume fills with liquid. The scheme involves modifying the
coefficient that multiplies the pressure change in the filling volume. The modification multiplies this
coefficient by a large number and is discussed in more detail in the next paragraph.

The finite difference form of the liquid momentum equation used can be written as

(3.4-73)

where  contains all the old time terms and  contains all the terms that multiply the

pressure change. Consider the filling example in Figure 3.4-12, where volume K is full of liquid and

volume L is full of vapor/gas. The first change to the liquid momentum equation is to set  to 0.01 m/s

to insure the explicit liquid velocity is going from the K volume to the L volume. The second change to the

liquid momentum equation is to multiply the  terms by a large number (FACTOR), which

forces  to be approximately the same as . Thus, the liquid-filled K volume will not show a pressure

spike. The K liquid momentum equation then has the form 

. (3.4-74)

The term FACTOR is pressure dependent because the density is pressure dependent. A

pressure-dependent linear ramp is used that begins ramping FACTOR from a highest value of 106 at 1,500

psia (10.342 x 106 Pa) to a lowest value of 104 at 1,250 psia (8.618 x 106 Pa).

3.4.7  Countercurrent Flow Limitation Model

There are several structures internal to RCSs where gravity drainage of liquid can be impeded by
upward flowing vapor/gas. These include the upper core tie plate, downcomer annulus, steam generator
tube support plates, and the entrance to the tube sheet in the steam generator inlet plenum. A completely
mechanistic approach to determine the onset of flow limiting for all structural configurations is
impractical. Both the Wallis and Kutateladze forms of the general flooding limit equation have been found
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to provide acceptable results when constants applicable to specific geometries are used in conjunction with

them. Wallis3.4-28 discusses the phenomenon of flooding, which can occur when liquid is falling in a
vertical structure and vapor/gas is moving upward. For a specified liquid downflow rate, there is a certain
vapor/gas upward flow rate at which very large waves appear on the interface, the flow becomes chaotic,

vapor/gas pressure drop increases, and liquid flows upward. Figure 3.4-13 is a reproduction of Wallis’
Figure 11.11 and shows this phenomena for water and gas. Wallis points out that the flooding point is not
approached as the limit of a continuous process (which occurs in drops or bubbles), but it is the result of a
marked instability. 

A general countercurrent flow limitation (CCFL) model is implemented3.4-33 that allows the user to
select the Wallis form, the Kutateladze form, or a form in between the Wallis and Kutateladze forms. This

general form was proposed by Bankoff et al.3.4-34 and is used in the TRAC-PF1 code.3.4-35 It has the
structure

(3.4-75)

where Hg is the dimensionless vapor/gas flux, Hf is the dimensionless liquid flux, c is the vapor/gas

intercept (value of  when Hf = 0, i.e., complete flooding), and m is the “slope”, that is the vapor/gas

intercept divided by the liquid intercept (the value of  when Hg = 0). A typical plot of  versus

 is shown in Figure 3.4-14. Quotes are used around the word “slope” because in a strict mathematical

sense, the slope is negative for Equation (3.4-75) and m = -slope. The constant m will be called the slope in

Figure 3.4-12 Two vertical vapor/gas/liquid volumes.
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this section of the manual and in the input cards and output edit, but one should think of this as the negative
of the true slope. The dimensionless fluxes have the form

(3.4-76)

(3.4-77)

where jg is the vapor/gas superficial velocity (αgvg), jf is the liquid superficial velocity (αfvf), ρg is the

vapor/gas density, ρf is the liquid density, αg is the vapor/gas volume fraction, αf is the liquid volume

fraction, g is the gravitational acceleration, and w is the length scale and is given by the expression

(3.4-78)

where β is a user-input constant.

Figure 3.4-13 Pressure-drop characteristics near the boundary between countercurrent and cocurrent flow.
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In Equation (3.4-78), Dj is the junction hydraulic diameter and L is the Laplace capillary length

constant, given by

. (3.4-79)

In Equation (3.4-78), β can be a number from 0 to 1. For β = 0, the Wallis form of the CCFL equation

is obtained; and for β = 1, the Kutateladze form of the CCFL equation is obtained. For 0 < β < 1, a form in

between the Wallis and Kutateladze forms is obtained; and Bankoff3.4-34 suggests that β be correlated to

data for the particular geometry of interest. He has included a possible function for β, although it is
somewhat restrictive. The form of Equations (3.4-75) through (3.4-79) is general enough to allow the
Wallis or Kutateladze form to appear at either small or large diameters. Other approaches (e.g., Tien, et.

al.3.4-36) appear to be more restrictive by defaulting to the Wallis form at small diameters and the
Kutateladze form at large diameters.

With regard to the solution method, if the CCFL model is requested by the user, the coding checks if
countercurrent flow exists and if the liquid downflow exceeds the limit imposed by Equation (3.4-75). If
this is true, the sum momentum equation [Equation (3.1-104)] and the flooding limit equation are applied.

This approach was suggested by Trapp,a who observed that the CCFL model is similar to the choking
model in that both place limits on the momentum equations. He observed that since the flooding

Figure 3.4-14 Plot of  versus  for a typical CCFL correlation.
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phenomenon can be incorporated by altering the interphase friction (as is done in TRAC-PF1), it can also
be incorporated by replacing the code’s difference momentum equation [Equation (3.1-105)] with the
flooding limit equation. The difference equation contains the interphase friction, whereas the sum equation
does not. (In the choking model, the sum momentum equation is replaced with the choking limit equation.)
This method is advantageous in that the phasic velocities still must satisfy the sum momentum equation,
which contains gravity and pressure terms. The numerical form of Equation (3.4-75) needed by the code is

obtained by letting  and , solving for , and squaring the equation, which results in

. (3.4-80)

Linearization of  gives

(3.4-81)

and substitution into Equation (3.4-80) gives

. (3.4-82)

3.4.8  Mixture Level Tracking Model

Accurate tracking of liquid levels is essential for modeling gravity-driven cooling systems. In
modeling a reactor system using ATHENA, a set of large hydrodynamic volumes are used to model the
various components. Because the discretization of the governing equations uses mean void fractions in
each control volume, a fine nodalization is required to resolve a large change in void fraction, such as is
associated with a liquid level. Even that may not be adequate to model the phenomena because ATHENA
uses a highly diffusive upwind difference scheme to discretize the advection terms. To compensate for the
inherent limitation of the finite-difference scheme used in ATHENA and to allow a coarser nodalization to
reduce the computational cost, a mixture level tracking model is implemented in ATHENA.

The mixture level tracking model is intended to model situations in which the void fraction increases
in the vertical direction. In places where there is a flow restriction such as a grid spacer or tie plate in a rod
bundle, liquid may pool on the flow restriction leading to an inverted void profile (void fraction decreasing
in the vertical direction) and multiple mixture levels may appear. An inverted void profile may also appear
when vapor/gas is injected below the surface of a subcooled pool and the vapor condenses as it rises due to

a. Personal communication, J. A. Trapp to R. A. Riemke, January 1987.
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buoyancy. To handle multiple mixture levels and inverted void profiles, ATHENA divides the vertical
flow passages in the user input into “level stacks” of volumes and allows only one mixture level per level
stack. Level stacks are built during the input processing phase of a computation. They are defined as a set
of volume singly connected in the vertical direction containing no flow restrictions between the volumes.
Junctions which have been input as “abrupt” constitute flow restrictions for the purposes of the mixture
level tracking model. The level tracking model ignores multiple junctions connected to the sides of
volumes for the purpose of building level stacks. The code searches for the head of a level stack by moving
from volume to volume to find a volume which has no vertical junction on its top face, or has an abrupt
junction attached to it top face, or is attached to a volume through the junction attached to its top face in
which the mixture level model has been deactivated by user input. If a volume has multiple junctions
attached to its top or bottom faces, it is treated as if the user had deactivated the level tracking model in the
volume. Multiple vertical connections on the top or bottom faces of a volume is not allowed by the mixture
level tracking model because the level appearance logic examines the void distribution over three adjacent
volumes to determine whether a void discontinuity exists. If there is more than one volume “above” or
“below” the current volume, the model has no way to determine whether a void discontinuity exists
because it has no way of determining which volume is “above” or “below”. The code searches for a
mixture level beginning at the head of a level stack and continuing down until a mixture level is found or
the bottom of the stack is found. Once a level has been found in a stack, the level is propagated from
volume to volume within the stack as fluid conditions dictate and another level cannot be initiated in the
stack until the original mixture level disappears from the stack. A mixture level can disappear only by
propagation out of the top or bottom of the stack. If a level stack contains no mixture level, it is searched
from the top down each time advancement until a mixture level is initiated in the stack and then the level is
propagated as described above. The stack is searched from the top down so that the mixture level, if found,
is placed as high in the stack as possible.

The mixture level tracking model implemented in ATHENA is based on TRAC-BF1/MOD1.3.4-37

The mixture level is defined as the location where a sharp change of the void fraction distribution exists.
This sharp change is associated with the change in flow regime. The model consists of five parts.

1. Detection of the mixture level appearance.

2. Calculation of mixture level parameters that are necessary to describe a mixture level,
such as the position and velocity of the level, and the void fractions above and below the
level.

3. Movement of the mixture level from volume to volume.

4. Modification of the mass and energy equations of ATHENA to accurately convect void
fractions above and below the mixture level, and modification of the density terms, the
pressure gradient, and the momentum flux terms in the momentum equation according to
the location of the mixture level.

5. Modification of the heat transfer calculation according to the mixture level.
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The details of the model and its implementation in ATHENA are presented in the next subsections.

3.4.8.1  Detection of Level Appearance. The mixture level is the location of an abrupt change
in void fraction that is associated with a change in flow regime. There are two types of mixture levels,
normal and inverted. With a normal mixture level (void profile), the void fraction increases in the upward
axial direction, while with an inverted void profile, the void fraction decreases in the upward axial
direction. These situations are illustrated in Figure 3.4-15, Figure 3.4-16, and Figure 3.4-17. Two
situations that give rise to a normal void profile are heating along a vertical flow path and depressurization
in a vertical column. Inverted void profiles typically arise as the result of liquid pooling in the upper and
lower tie plates of a BWR pressure vessel. If more than one junction is connected to the top or if more than
one junction is connected to the bottom, the mixture level model is not used and is turned off.    

The logic for the detection of a mixture level appearance in a computational cell is based on BWR

experimental data and numerical experiments.3.4-37,3.4-38,3.4-39 The logic for detecting a mixture level is
different for the two different kinds of mixture levels.

The level detection logic for a normal void profile, Figure 3.4-15, is

αM - αL  >  δαc (default = 0.2) (3.4-83)

or

Figure 3.4-15 Mixture level in normal void profile.
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αL - αK  >  δαc (default = 0.2) (3.4-84)

Figure 3.4-16 Mixture level in a volume below a void fraction inversion.

Figure 3.4-17 Mixture level in a volume above a void fraction inversion.

α+

j+1

j

dzL

dzlL α-

αK

αM

L

L

αM

α+

α-

αK

dzL

j+1

j

L

LdzlL
INEEL-EXT-98-00834-V1 3-214



ATHENA/2.3
and

αM  >  αc (default = 0.7) . (3.4-85)

Here, αc is the minimum allowable void fraction in the cell above a normal mixture level, and δαc is

the smallest change that signals the presence of a normal mixture level. The values in parentheses are the

default values used in ATHENA and are recommended by Cheung et al.3.4-38 The notation α or αg is used

for volume vapor/gas fraction (void fraction). The notation αf is used for volume liquid fraction.

The logic for an inverted void profile depends on whether a particular cell is above or below a void

inversion. A mixture level is defined as being below a void profile inversion Figure 3.4-16 if

αL - αM  >  δαj (default = 0.1) . (3.4-86)

If a mixture level is above a void profile inversion (Figure 3.4-17), the criteria becomes

αK - αL  >  δαj (default = 0.1) . (3.4-87)

The void inversion logic is activated if there is an orifice at the junction. The level detection logic is

summarized in block diagrams as shown in Figure 3.4-18, Figure 3.4-19, Figure 3.4-20, and Figure
3.4-21.

3.4.8.2  Calculation of Level Parameters. The parameters that describe the mixture level are:

1. The void fraction above and below the level .

2. The location of the level (dzl).

3. The mixture level velocity (vlev).

3.4.8.2.1  Determination of the Void Fraction Above and Below the Level--The

correlations to calculate the void fraction above and below the level , respectively, are given

below for the three cases:

1. Normal profile.

2. Void inversion above volume L or flow restriction at the top of volume L.

3. Void inversion below volume L or flow restriction at the bottom of volume L.

αL
+   and αL

-  

αL
+ and αL

-
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Figure 3.4-18 Level detection logic diagram for volume L.
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Figure 3.4-19 Level detection logic diagram for volume L above an inverted profile.
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Figure 3.4-20 Level detection logic diagram for volume L below an inverted profile.
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Figure 3.4-21 Level detection logic diagram for a normal profile.
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Case 1: Normal Void Profile.

For a normal void profile, the void fraction below the level is assumed to equal the void fraction in
volume K, i.e.,

. (3.4-88)

In the absence of entrainment of liquid from below the level, the void fraction above the level is
given by

  . (3.4-89)

If the velocity at the cell junction is upward, the void fraction  is derived from the correlation of

the entrainment liquid mass flux (Glent) developed by Rosen3.4-40 as

(3.4-90)

and

(3.4-91)

where

vf,j+1 = the junction liquid velocity

Aj+1 = the junction area

AL = the average area of the control volume.

The entrainment liquid mass flux (Glent) is expressed by

(3.4-92)
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CK = (3.4-93)

VCRIT = (3.4-94)

DMAX = . (3.4-95)

In the above expression, Glent is calculated using donor cell-averaged values for ρf, ρg, and σ at cell

L. The value of jg is set equal to (for positive vf)

jg  =  αM vg, (3.4-96)

where

(3.4-97)

and vg,j+1 is the junction vapor/gas phasic velocity.

If either vf,j+1 or vg,j+1 is negative,  is given by

. (3.4-98)

Case 2: Void Inversion Above Volume L or Flow Restriction at the Top of Volume L.

The calculation of the void fraction above and below the level (  and ) is similar to Case 1

except with the following modification.

The volumetric vapor/gas flux used in Equations (3.4-92) and (3.4-93) becomes

jg  =  0.999vg . (3.4-99)

If vg,j+1 is negative, then
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. (3.4-100)

Case 3: Void Inversion Below Volume L or Flow Restriction at the Bottom of Volume L.

For a cell mixture level occurring above a void fraction inversion or bottom cell area reduction, the

void fraction below the level  is calculated using the drift flux approximation, and is given by

(3.4-101)

where

vgj = (3.4-102)

Co = (3.4-103)

C∞ = . (3.4-104)

Rouhani’s3.4-41 correlation is used for C∞. The parameters used in calculating C∞ are based on

cell-centered quantities. The volumetric fluxes  and  are calculated using junction-donored velocities

from bottom cell j and void fractions of either αK or , depending on whether or not the phasic velocities

are positive or negative, respectively. They are given by

(3.4-105)

(3.4-106)

(3.4-107)
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(3.4-108)

. (3.4-109)

The logic and correlations used to calculate  are the same as for the normal void profile scheme.

3.4.8.2.2  Location of the Mixture Level--Once the presence of a level is determined in a
particular volume, a level flag is set and the level parameters are calculated. The position of the level (dzlL)

of a cell with length dzL is given by

(3.4-110)

where the above and below mixture level void fractions are given above.

3.4.8.2.3  Velocity of Level Movement--The level velocity vlev is obtained by forming a

difference approximation to the time derivative of Equation (3.4-110) as

. (3.4-111)

3.4.8.3  Movement of Mixture Level Between Volumes. Once the position and velocity of a
mixture level has been determined, its position at the end of the time advancement is estimated. If the
mixture is predicted to lie outside of the volume in which it currently resides, the level is moved into the
appropriate volume before the advancement is attempted. This is done to prevent pressure spikes and
oscillations which would result from the discontinuous change in the flow regime in the junction through
which the mixture level passes when moving from one volume to an adjacent volume. The algorithm for
the movement of the mixture level from one volume into an adjacent volume is based on the level crossing

algorithm originally developed at INEEL for the TRAC-BWR3.4-37,3.4-39code. This algorithm was then

refined at Pennsylvania State University for the TRAC-BWR code3.4-42,3.4-43,3.4-44 .

The level crossing algorithm consists of three parts:

1. Prediction of the position of the mixture level at the end of the advancement.

2. Determination of the mixture level parameters in its new location.
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3. Computation of the phasic velocities in the junction through which the mixture level
passed when moving from one volume to an adjacent volume.

3.4.8.3.1  Prediction of Mixture Level Position--The prediction of the position of the mixture
level is accomplished by a simple level velocity extrapolation as given by

. (3.4-112)

If the projected level position is negative, the mixture level is moved into the volume below the
current volume if the volume below the current volume is within the same level stack or the volume below
the current volume is the head of an adjacent level stack and no level exists in the adjacent level stack. If
the projected level position is greater than the height of the current volume, the mixture level is moved into
the volume above the current volume if the volume above the current volume lies in the same level stack or
if the volume above the current volume is the bottom volume of an adjacent level stack and there is no
mixture level in the adjacent level stack.

3.4.8.3.2  Determination of Level Parameters in New Location--Once the level has been
determined to reside in a different volume from the current volume, the level parameters in the two
volumes must be reset to reflect the new location. The level parameters which must be computed for its
new location are the location of the level within its new volume, the above and below level void fractions,
and the velocity of the mixture level in the new volume. The location of the level in the new volume is set
to either the top or bottom of the volume depending upon whether the level enters the volume from above
or below. The void fraction in the volume containing the mixture level is adjusted so that there is enough of
the minor phase (the minor phase is vapor/gas if the mixture level lies at the top of the volume and the
minor phase is liquid if the mixture level lies at the bottom of the volume) to support the presence of a
mixture level. Finally the above and below level void fractions are determined. The equations used for
these adjustments are shown below for the situation in which the mixture level moves down from volume
L into volume K (See Figure 3.4-15):

(3.4-113)

(3.4-114)

(3.4-115)

. (3.4-116)
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3.4.8.3.3  Phase Velocity Adjustment--After the level parameters are determined for the new
location of the level, the phase velocities in the junction connecting the two volumes must be recomputed.
This is needed because the flow regime in the junction depends upon the mixture level location. If the
mixture level is in the volume at the top of the junction (top with respect to gravity), the flow regime in the
junction is the low void fraction bubbly flow regime and if the mixture level is in the volume at the bottom
of the junction, the flow regime is the high void annular/mist or mist flow regime. The magnitude of the
interfacial friction is very different in these two flow regimes which results in a different relative velocity
between the phases and a different slip ratio. If the phase velocities were not recomputed to be consistent
with the new flow regime in the junction, pressure spikes and oscillations would result as the phase
velocities adjusted to the new flow regime. The velocity of the major phase in the junction, i.e. the
vapor/gas velocity in annular/mist or mist flow and the liquid velocity in bubbly flow, is computed from a
steady-state, zero phase change phasic mass balance [Equations (3.1-2) or (3.1-3)] for the volume from
which the mixture level exited and the minor phase velocity is set equal to the major phase velocity. A flag
is set for the junction to disable the under-relaxation of the interfacial friction coefficient so that the values
from two different flow regimes (i.e., the flow regimes in the junction before and after level crossing) are
not averaged together.

3.4.8.4  Modification of ATHENA Field Equations for Level Tracking. The following
modifications will be made in solving the field equations in ATHENA:

1. The donor cell void fraction based on the void fraction above and below the mixture level
is used in the momentum equations and the mass and energy convective terms.

2. The phasic density, pressure gradient, and momentum flux terms in the momentum
equations are modified according to the location of the mixture level.

3.4.8.4.1  Donor Cell Volume Fraction Formulation--The donor volume fractions used
at junctions j+1 and j in the momentum equations and convective terms of the mass and energy equations
are given in Table 3.4-1.  A positive velocity is for rising fluid.

The determination of the donor volume fraction is to ensure that the level is maintained as a sharp
interface in ATHENA.

Table 3.4-1 Logic for determining donor volume fraction.

Junction vg vf

j + 1 above level > 0 > 0

j + 1 above level < 0 αM < 0 1 − αM

j below level > 0 αK > 0 1 − αK

j below level < 0 < 0

α· g α· f

αL
+ 1 αL

+ –

αL
- 1 αL

 ––
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3.4.8.4.2  Modifications to the Momentum Equations--The density terms, pressure
gradient, and momentum flux terms in the sum and difference momentum equations are modified to
include the effect of a two-phase mixture level. The modifications to the individual terms of the
momentum equations are done in such a way as to make the entire momentum cell appear to contain a
single flow regime rather than containing two regions of dissimilar flow regimes. The flow regime for the
momentum cell is that flow regime existing in the junction between the volumes. If the mixture level is in
the upper half of the volume forming the lower portion of the momentum cell [See Figure 3.4-22 (A-1)],
the terms in the momentum equation are computed as if the mixture level were in the center of the volume
forming the lower portion of the momentum cell [See Figure 3.4-22 (A-2)]. If the mixture level in the
lower half of the volume forming the upper portion of the momentum cell [See Figure 3.4-22 (B-1)], the
terms in the momentum equation are computed as if the mixture level was located in the center of the
volume forming the upper portion of the momentum cell [See Figure 3.4-22 (B-2)].

 The averaged phasic densities in the momentum equation are a line average of the phasic densities
on either side of the junction and are given by Equation (3.4-117) for the mixture level location shown in

Figure 3.4-22 (A-1) and by Equation (3.4-118) for the situation shown in Figure 3.4-22 (B-1). These are

(3.4-117)

(3.4-118)

for the liquid densities, and the vapor/gas densities are computed similarly.

The pressure gradient in the momentum cell must also be modified to accommodate the presence of
the mixture level. The pressure gradient in the momentum cell is computed as

. (3.4-119)

If there is a mixture level in the momentum cell, the pressure at one or the other end of the momentum cell
is modified. The pressure at the K end of the momentum cell is modified if the mixture level is in the K
volume, and the pressure at the L end of the momentum cell is modified if the mixture level is in the L
volume. The pressures are modified by extrapolating the pressure gradient in the junction below the
junction containing the mixture level. The junction below the one containing the mixture level is in bubbly
flow which has a large pressure gradient. Extrapolation of a large pressure gradient leads to a better
numerical performance since small errors in the computed pressure gradient leads to a smaller relative
error than extrapolation of small pressure gradients found in the junctions above the mixture level. The
pressures are modified as
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dzK dzL+
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INEEL-EXT-98-00834-V1 3-226



ATHENA/2.3
Figure 3.4-22 The control volume for momentum cell j.
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(3.4-120)

(3.4-121)

where

(3.4-122)

for the situations shown in Figure 3.4-22 (A-1) and Figure 3.4-22 (B-1), respectively. If there is no
junction at the bottom or top of the volume containing the mixture level, the pressure gradient due to
gravity head is used to adjust the volume pressure.

The momentum flux terms are also modified in the momentum equations. These terms are set to zero
for the junctions above and below the volume containing the mixture level.

3.4.8.5  Modification of Heat Transfer Calculation. When a heat structure is associated with a
hydrodynamic volume where a mixture level exists, the heat transfer will be partitioned according the level
location (Figure 3.4-23). The heat fluxes from the wall to the liquid phase and from the wall to the
vapor/gas phase (qwf and qwg) are calculated as

Figure 3.4-23 Hydrodynamic volume with heat structure.
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(3.4-123)

(3.4-124)

where the heat transfer coefficient to the vapor/gas and the liquid (hwgg and hwff), wall temperature (Tw),

and vapor/gas and liquid temperature (Tg and Tf) are the same as described in Section 3.3.9.

3.4.9  Thermal Stratification Model

A thermal stratification model is included to improve the accuracy of solutions when there is warm
liquid appearing above cold liquid in a vertical stack of cells. In this case, there is a sharp thermal front
between the two liquids because of the density differences between them. Because ATHENA uses a
first-order upwind differencing scheme that has considerable numerical diffusion, there is significant
artificial mixing of the hot and cold liquids. This has an unfavorable effect on the accuracy of the solution.
Therefore, a model is included with the following features:

1. A sharp temperature profile is maintained which separates the hot liquid from the cold
liquid whenever thermal stratification occurs.

2. Correct donoring of liquid specific internal energy at the junctions for the cell where the
thermal stratification occurs.

3. Only the hot liquid in a cell which contains the thermal front is allowed to flash.

In addition, the model is compatible with the mixture level model and when used in conjunction with
the level model, it allows the code to predict the stratified behavior in a tank with considerable accuracy.

There are essentially two good choices to meet the requirements stated above. One possibility is to
use a Godunov-type scheme with an artificial compression method to sharpen the temperature profile at the

edge of the cell. The second approach is to use Harten’s subcell resolution scheme,3.4-45 to track the front
in the interior of the cell. The problem with the first approach is that the front is tracked at the edge of the
cell, whereas the front spends most of its time in the interior of the cell. Among other things, criteria 2 and
3 of the above may never be satisfied. This is not a serious problem for CFD codes where cell size tends to
be fairly small. For engineering codes that use coarse nodalization, Harten’s approach is the best approach
if it is applicable to the problems in question.

It should be emphasized that although the proposed model can be viewed as an extension of Harten’s
method to the liquid specific internal energy for two-phase flow problems, the implementation of the
model draws heavily from that of the mixture level model. Still, to have a deeper understanding of the
range of applicability of the method, the reader is strongly encouraged to read Harten’s paper. In the

qwg hwgg Tw Tg–( ) 1 dzlL

dzL
----------– 

 =

qwf hwff Tw Tf–( )
dzlL

dzL
---------- 

 =
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thermal stratification model, the solution locally near the front is assumed to have a very simple profile. It
is piecewise constant with the larger positive value appearing on top of a smaller value. Because ATHENA
uses a simple first-order scheme with positive coefficients, it is therefore possible to determine the position
of the front accurately using a simple calculation given in Section 3.4.9.3 below.

3.4.9.1  Overview of Software Design for the Thermal Stratification Model. The thermal
front is defined as the location where a sharp change in the temperature of the liquid occurs. The thermal
front tracking model implemented in ATHENA is analogous to the mixture level tracking model currently
in ATHENA (see Section 3.4.8), both in its methodology and in its implementation. The model consists of
four parts:

1. Detection of the thermal front appearance and disappearance.

2. Calculation of thermal front parameters that are necessary to describe a thermal front such
as the position and velocity of the front, and the temperatures above and below the front.

3. Modification of the liquid specific internal energy at the junctions to accurately convect
the liquid specific internal energy above and below the front.

4. Modification of the heat transfer calculation and vapor generation rate according to the
position of the thermal front and temperature of the hot liquid in the cell that contains the
thermal front.

3.4.9.2  Detection of Thermal Front Appearance and Disappearance. The thermal front is
the location of an abrupt change in the liquid temperature. The logic for the detection of a thermal front
appearance and disappearance in a computational cell is based on experimental data and numerical
experiments. The density difference between the hot and cold liquid typically exceeds 3%. The thermal
front detection logic for cell L in Figure 3.4-24 is

(3.4-125)

or

(3.4-126)

provided that no thermal front exists in cell M or cell K and the liquid in the cells K, L, and M is stably
stratified, or in other words, the specific internal energy of the liquid is a monotonically increasing from
cell K to cell L to cell M. This is both a physical and mathematical necessity, since the computed dz1 at

ρM ρL–
ρL

---------------------   0.01>

ρK ρL–
ρL

---------------------   0.01>
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cell L according to Equation Figure 3.4-24 should be a positive number less than dz. See Figure 3.4-25 for
the logic diagram for the thermal front detection.

3.4.9.3  Calculation of Front Parameters. The front parameters that describe the thermal front
are

1. The specific internal energy of the liquid above and below the front .

2. The location of the front (dzlL).

3. The thermal front velocity (vfront).

3.4.9.3.1  Determination of the Specific Internal Energy Above and Below the
Front--The specific internal energy of the liquid below the front is set equal to the specific internal energy
of the liquid in volume K, that is

 , (3.4-127)

while the specific internal energy of the liquid above the front is set equal to the specific internal energy of
the liquid in volume M, that is

. (3.4-128)

Figure 3.4-24 Thermal front in a tank.
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Figure 3.4-25 Thermal front detection logic diagram for volume L.
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3.4.9.3.2  Location of the Thermal Front--Once the presence of a thermal front is
determined in a particular volume, a flag is set and the front parameters are calculated. The position of the
thermal front (dz1L) in a volume of length dzL is given by

(3.4-129)

where  and  are given by Equations (3.4-127) and (3.4-128). It is emphasized that this computation

is performed only when . This ensures that dz1L is a positive number less than dzL.

3.4.9.3.3  Velocity of the Thermal Front--The velocity of the thermal front is computed
from

. (3.4-130)

3.4.9.3.4  Modifications for Front Crossing--The criteria to determine if a thermal front
will cross a cell boundary area

1. For a rising front, vfront > 0,

(3.4-131)

or

. (3.4-132)

This is the case when the thermal front is near the top of volume L and the densities ρL and  are very

close.

2. For a falling front, vfront < 0

(3.4-133)

dz1L dzL
UfL

+ UfL–

UfL
+ UfL

-–
----------------------

 
 
 

=

UfL
+ UfL

-

UfL
+ UfL UfL

-> >

vfront
dz1L

n dz1L
n 1––

∆t
-----------------------------------=

ρL ρL
-–

ρL
--------------------   0.001<

dz1L

dzL
-----------   0.98≥

ρL
-

ρL
+ ρL–
ρL

--------------------   0.001<
3-233 INEEL-EXT-98-00834-V1



ATHENA/2.3
or

. (3.4-134)

This is the case when the thermal front is near the bottom of volume L and the densities ρL and  are very

close. 

Figure 3.4-26 shows the logic diagram for the computation of thermal front parameters with
modifications for front crossing.

3.4.9.4  Modification of ATHENA Field Equations for Front Tracking. The following
modifications were made in solving the field equations in ATHENA:

1. The donor cell liquid specific internal energy based on the liquid specific internal energy
above and below the thermal front will be used in the field equations.

2. The liquid temperature in the cell that contains the thermal front is modified in the
computation of mass and energy transfer to indicate that only the hot liquid in the cell can
undergo phase change (i.e., flash to vapor).

3. The liquid interphase heat transfer coefficient in the cell that contains the thermal front is
modified to indicate that only the hot liquid in the cell can flash.

dz1L

dzL
-----------   0.02≤

ρL
+
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Figure 3.4-26 Computation of thermal front parameters logic diagram for volume L.
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3.4.9.4.1  Donor Cell Internal Energy Formulation--The donor specific internal energies to be
used at junctions j+1 and j in the field equations are given in Table 3.4-2. A positive velocity is for rising
fluid.

3.4.9.4.2  Modifications of Mass and Energy Transfer Calculation--Because only hot
liquid in the cell that contains the thermal front can flash, the liquid interfacial heat transfer coefficient
needs to be recalculated to reflect this. If the thermal front occurs at cell L, then Hif will be recomputed as

. (3.4-135)

The contribution to the vapor generation by the term Hif (Ts - TfL) is then modified to

be , where  is the temperature of the hot liquid in the cell that contains the

front (Figure 3.4-27).

Table 3.4-2 Logic for determining donor specific internal energy.

Junction vg vf

j+1 above front > 0 Ug,L > 0 Uf,M

j+1 above front < 0 Ug,M < 0 Uf,M

j below front > 0 Ug,K > 0 Uf,K

j below front < 0 Ug,L < 0 Uf,K

Figure 3.4-27 Hydrodynamic volume with thermal front.
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3.4.10  Energy Conservation at an Abrupt Change

In special situations involving abrupt changes in either flow geometry (i.e., area changes) or flow
conditions (i.e., shocks), predictions using the default ATHENA models do not conserve total energy. The
situation usually involves significant pressure drops between ATHENA volumes. The primary interest in
this is the simulation of the discharge at a break in the piping at a nuclear plant into the containment vessel.
When the containment is modeled using normal ATHENA volumes (not time-dependent volumes), the
lack of total energy conservation can result in the containment temperature being significantly

under-predicted (by approximately 100 oF).a

The thermal (internal) energy Equations (3.1-11) and (3.1-12) are equivalent to the total energy
equations (i.e., energy is conserved) in the differential sense. This will not be true in the finite difference
implementation because thermal energy equations cannot be expressed in so-called conservation law form
as is possible for the total energy equations. Although the total energy equations can be implemented in the
conservation form, there are some difficulties in the numerical implementation. These include the energy
storage, energy flux, interfacial energy, and kinetic energy terms. The method used in ATHENA is to
allow the user to correct the energy flux terms at points where they are known to be in error. This is done
through a user junction input flag. The method used will next be described.

The vapor/gas thermal energy equation will be used to describe the method. The liquid thermal
energy equation is similar. The nonexpanded vapor/gas thermal energy Equation (3.1-115) is of the finite
difference form

(3.4-136)

where RHS is the right-hand side terms. If the vapor/gas velocity is positive through junctions j and j+1,

the pressure used in the energy flux term for junction j is  rather than . Thus, Equation (3.4-136)

becomes

(3.4-137)

For positive vapor/gas velocity in junction j, the donored density  and the donored specific

internal energy , will also be from volume K. Thus, the energy flux term for junction j is really the

a. Personal communication, M. Van Haltern to R. A. Riemke, November 1991.
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specific enthalpy from volume K. This modification results in using specific internal energy in the time
derivative and specific enthalpy in the convective terms. This is the approach used in the containment code

CONTAIN.3.4-46 In the CONTAIN code, the total energy equation is the starting equation, but the kinetic
energy is then ignored in the time derivative and convective terms because typical containment volumes
are quite large. The resultant time derivative and convective terms are the same as shown in Equation
(3.4-137). Using CONTAIN and the ATHENA modification to the energy flux give results that correctly
match the containment temperature.

3.4.11  Jet Junction Model

Jet junctions are used where subcooled liquid is injected into the bottom of a pool in a vertical
volume. The liquid from the jet causes a stirring action in the pool to increase the condensation rate on the
surface of the pool. The surface turbulence intensity is a function of the distance of the surface from the jet,
the pool diameter, the jet Reynolds number, and liquid properties such as the Prandtl and Jacob numbers.
The details of the model are discussed in the closure relations section of Volume IV.
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3.5  Component Models

ATHENA consists of a variety of generic models that are used to build system models. These include
the pipe, annulus, branch, single-volume, single-junction, etc., and will be discussed in more detail in
Volume II of this manual. The general philosophy has been to avoid system component models such as
steam generator and core. However, certain subsystem components are unavoidable due to unique
processes or performance. ATHENA contains models for subsystem components such as a branch,
separator, jet mixer, pump, turbine, valve, accumulator, ECC mixer, annulus,  pressurizer, and feedwater
heater. A brief summary of each of these models is included here.

3.5.1  Branch

The branch component is a model designed for convenient interconnection of hydrodynamic
components. The identical result can be obtained by using a single-volume component and several
single-junction components. Thus, the branch is a separate component only in the input processing
scheme.

The crossflow junction has been added in which the junction velocities are assumed to be normal to
the one-dimensional flow path of the hydrodynamic volume. Thus, the branch component can include
multiple connections at the inlet, outlet, or in the crossflow direction.

Specialized modeling considerations are applied to any volume having multiple junctions connected
at either volume end. (The ends of a hydrodynamic volume are the inlet and outlet, as defined in Section
3.1.1.)

These special calculations include both the method for calculating the volume average velocities
(See Section 3.1.6) and the method for partitioning the volume cross-sectional area between the multiple
inlet or multiple outlet junctions (See Section 3.5.1.1). The partitioned volume cross-sectional areas are
used both in the momentum equations source terms (i.e., wall friction, abrupt area loss, user-specified loss,
etc.) and in the momentum equations time variation of momentum.

In applications, the multiple junction and crossflow models are used in three distinct ways to model
branching flows. These are a one-dimensional branch, a tee branch, and a crossflow branch. A combination
of the three basic branches may also occur. Each of the three basic models will be discussed in turn.

3.5.1.1  One-Dimensional Branch. This basic branch model is consistent with the
one-dimensional approximation for a piping network and assumes that multidimensional effects at
branches are small compared to system interaction effects. In the case of branched flows that occur in
headers or plena, the model gives an accurate physical description of the flow division or merging process;
and the one-dimensional branch model is intended primarily for use in modeling such branched flows.
Examples of such situations in LWR systems are flow division at the core inlet if parallel flow paths
through the core are modeled, steam generator inlet and outlet plena when several parallel tube groups are
modeled (for the effect of tube height and length), or at a wye connection.
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The partitioned volume cross-sectional areas for the one-dimensional branch are discussed. The
partitioned volume cross-sectional area for a junction is the actual volume cross-sectional area divided in
proportion to the volume flow of the junction divided by the total volume flow for all the junctions on that
end of the volume. This method of apportioning the volume cross-sectional area satisfies continuity but
does not conserve momentum, particularly for high velocity differences between the merging streams. (For
flow spliting, however, the method does preserve momentum.) For this reason, the special jet mixer
component was developed for merging flows having high relative velocities, such as in a jet pump. The jet
mixer component can be used for one-dimensional mixing but this component model is limited to two inlet
streams and a single outlet stream. (See Section 3.5.3 for a description of the jet mixer model).

The method for determining the partitioned volume cross-sectional area for a one-dimensional

branch is illustrated in Figure 3.5-1 for a volume having two inlet junctions and one outlet junction The
junctions J1 and J2 are the inlet junctions, and junction J3 is the outlet junction.  The volume cross-sectional

area for inlet junction j attached to volume VK (where there are N junctions on the inlet) is given by:

. (3.5-1)

The dotted lines in Figure 3.5-1 show the approximation to the stream tubes for the three junctions.

For the case of Figure 3.5-1, N = 2 and j  takes the values of J1 and J2. A similar equation is used for

multiple output junctions.

3.5.1.2  Tee Branch. The crossflow junction (see Section 3.4.5) is used to form a 90-degree tee, as
shown in Figure 3.4-10. In this particular application, the side connection to the tee is modeled using a
junction in which one-half of the junction momentum equation has the crossflow form. (The half of
junction J3 associated with volume VL is a crossflow junction and is designated by an X, see Figure

3.4-10.)

. 
Figure 3.5-1 One-dimensional branch
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No special component is provided to accomplish the input associated with a model, such as

illustrated in Figure 3.4-10. The volume, VL, may be specified as a branch with the associated junctions or

as a single-volume with single-junctions used to specify the connecting junctions. In either case, junctions
J1 and J2 should be specified as smooth unless actual abrupt changes in area occur at either junction.

Junction J3 should be specified as smooth with a user-specified form loss factor to account for the turning

and entrance losses. In addition, junction J3 must be specified so that the half of the junction associated

with volume VL is modeled as a crossflow junction and the half associated with volume VK is a normal

junction. These options are specified through input of junction control flags.

It is also possible to model a 90-degree tee without using a crossflow junction; however, unphysical
numerical results have been obtained at times for reasons that are not fully understood. Thus, the 90-degree
tee model using the crossflow junction is recommended and is a closer approximation to the actual fluid
momentum interaction that occurs at a tee.

In some branching situations where the throughflow is small or where the flow is constrained by the
geometry, body force effects may be significant. Examples that occur in PWR systems are the cold leg
connections to the inlet annulus and downcomer and the hot leg connection to the upper plenum and core.

This type of branched flow is modeled as shown in Figure 3.5-2. Here the vertical direction is modeled as
the throughflow direction (indicated by the volume orientation arrows). The cold or hot leg connections are
modeled by crossflow junctions. The throughflow direction of volume V3 is chosen to correspond to the

major flow path. In the case of a PWR inlet annulus, throughflow in the horizontal direction is inhibited by
the annular structure; in the case of the upper-plenum-to-core connection, the area for flow in the vertical
direction is large compared to the flow area in the horizontal direction. Some judgment is required to select
the orientation. However, the crossflow branch connection will permit throughflow in the horizontal
direction, but with some accompanying pressure rise and drop associated with the fact that the momentum
flux terms can be neglected in the crossflow part of the junction.

The model illustrated in Figure 3.5-2 has the additional advantage that the effect of vertical void
gradients in the flow out of the horizontal connections may be more sharply defined as a result of the
central volume, V3, which has a vertical height equal to the diameter of branch volumes V1 and V4.

No special component model is provided for modeling the vertical tee, and either a branch or a
single-volume may be used for volume V3. The branch component is more convenient, since all junctions

connecting to volume V3 can be specified with the branch component.

3.5.1.3  Crossflow Branch. A third type of branched flow path can be created by the use of a
crossflow junction to couple two volumes. This type of branch is used to model crossflow between parallel
core channels and leak paths between volumes having centers at the same vertical elevation. The
application of the crossflow junction for crossflow or leak path modeling is illustrated in Figure 3.4-9. The
default length scale associated with the crossflow junction is one-half the diameter of the K volume plus
one half the diameter of the L volume. This length is only used for modeling the fluid inertia terms in the
momentum equation. The user has the option to input the length for a crossflow junction.
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The pure crossflow branch is most easily modeled using a single-junction component for the

crossflow junction. However, either volume V1 or V2 in Figure 3.4-9 can be modeled using the branch

component and specifying the coupling junctions with that component.

3.5.2  Separator

PWR and BWR nuclear power plants use a steam separator to increase the quality of steam prior to
the generation of mechanical energy in the turbine. Typically in BWR’s the quality of the steam is
increased from 10-13% at the core output to at least 90% at the outlet of the separator. In addition, steam
dryers are also used, which further increase the quality of the steam to at least 99.9%. By providing dry
steam to the turbines the efficiency of the turbines in increased, wear is decreased, and radioactivity carried
to the turbines is minimized. Water entrained with the steam is called carryover.

In addition to producing dry steam, the separators and dryers minimize the quality of the water
removed from the dryed steam. The steam in the water removed from the dryed steam is called carryunder.
The problems associated with excessive carryunder are that lower fluid density increases the chance of
pump cavitation, it slightly increases the void supplied to the BWR core or PWR steam generator, and it
slightly increases the pressure drop in the BWR core or PWR steam generator.

The physical situation being modeled is the removal of water from the two phase flow which is
exiting either the core in a BWR or the steam generator in a PWR. There are usually three distinct regions
common the both types of nuclear plants. The first is a centrifical type separator which causes the two
phase flow to rotate rapidly either by injecting it into a cylinder either tangentially or from the bottom
through turning vanes. As the mixture rotates, the denser liquid is thrown to the interior wall of the
cylinder and drained while the less dense steam is removed from the center of the cylinder at the top. After

Figure 3.5-2 Gravity effects on a tee.
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exiting the centrifical separator, the higher quailty steam-water mixture enters a gravity separator where
the momentum of the flow is reduced such that the gravitational forces cause the water droplets to fall to
the bottom where the liquid is drained into a downcomer while the steam mixture exits from the top.
Finally the steam leaving from the top of the gravity separator enters a dryer. The dryer is a series of
convoluted flow passages through chevron plates that cause the mixture to accelerate repeatedly.  Water
droplets entrained in the flow impinge on the plates where they are collected and drained while the steam
continues on to the turbines.

The separator component model has two options, the simple separator model which was
implemented in previous versions of ATHENA and a mechanistic separator model intended to model the
centrifugal separators and chevron dryers in BWR reactors. The separator model determines the convected
volume fractions in the liquid fall back junction and the vapor/gas outlet junction.

3.5.2.1  Simple Separator. The model is a nonmechanistic or black-box model consisting of a
special volume with junction flows, as pictured in Figure 3.5-3. A vapor/gas-liquid inflowing mixture is
separated by defining the volume fractions of the outflow streams using empirical functions. No attempt is
made to model the actual separation process from first principles.

The separator vapor/gas  outlet performance is defined by means of a special function for the
junction vapor/gas void fraction at J1. The donored junction vapor/gas volume fraction used to flux mass

through the vapor/gas outlet is related to the vapor/gas volume fraction in the separator volume using the

curve in Figure 3.5-4. For separator volume vapor/gas volume fractions above the value of VOVER (an
input parameter),  a vapor/gas volume fraction of VGMAX (an input parameter) is fluxed out junction J1.

If VGMAX is 1.0, perfect vapor/gas separation occurs. For separator volume vapor /gas volume fractions
less than VOVER, a two-phase mixture is fluxed out. The VOVER parameter helps govern the vapor/gas
volume fraction of the outflow. If VOVER is small, the vapor/gas outflow corresponds to an ideal
separator for vapor/gas if VGMAX is 1.0. If VOVER equals 1.0, the vapor/gas outlet junction behaves as a

Figure 3.5-3 Typical separator volume and junctions.

Volume K

J1-Vapor/gas outlet junction

J3-Separator inlet junction

J2-Liquid fall back junction
3-247 INEEL-EXT-98-00834-V1



ATHENA/2.3
normal junction, and the vapor/gas outlet junction volume fraction is equal to the separator volume
vapor/gas volume fraction. A limit is placed on the vapor/gas volume fraction of the outflow, in that at
most 99.9% of the vapor/gas present in the separator volume can be fluxed out junction J1. This limit is

used to prevent over extraction of vapor/gas.

The flow of the separator liquid drain junction is modeled in a manner similar to the vapor/gas outlet
except that a liquid volume fraction of VFMAX (an input parameter) is fluxed out junction J2 when the

volume liquid fraction is greater than the value of VUNDER (an input parameter) (see Figure 3.5-4). As
with the vapor/gas output, if VFMAX is 1.0, perfect liquid separation occurs. As with the vapor/gas outlet,
a 99.9% extraction limit is placed on the liquid drain. Normal donored fluxes are used for the separator
inlet junction. 

Although the volume fractions used in the flux of mass and energy from the separator volumes are
modified, the normal junction momentum equations are used to calculate the flow velocities. It is not

required that αgJ1 and αfJ1 sum to 1, nor is it required that αgJ2 and αfJ2 sum to 1. This can occur in

counter-current flow.

3.5.2.2  Mechanistic Separator. The mechanistic separator component model is intended to
model the centrifugal separators and chevron dryers in BWR reactors. Like the simple separator, the
mechanistic separator consists of a special volume with three junction flows, as pictured in Figure 3.5-3. A

Figure 3.5-4 Donor junction volume fractions for outflow.
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vapor/gas-liquid inflowing mixture is separated by defining the quality of the outflow streams using
mechanistic models of the separating process in the separator and dryer components.

3.5.2.2.1  Centrifugal Separator Model--The model for the centrifugal separator was
taken from the TRAC-BWR computer code and was developed by the General Electric Company as part of
the joint USNRC- EPRI- General Electric Company sponsored BWR Refill-Reflood Program. Separators
are made up of either two- or three-stages connected in series. The separator model determines the
separating efficiency of a single-stage, feeding the output of one stage to the input of the next stage. The
primary measures of separator performance are carryover of entrained liquid in the vapor/gas leaving the
separator, carryunder of vapor/gas in the liquid leaving the discharge passage of the separator, and the
separator pressure drop. A mechanistic model has been developed to calculate the carryover, carryunder,
and separator pressure drop. The separator component volume as shown in Figure 3.5-3 represents the
physical volume in the separator barrel and discharge passages. The inlet junction J3 represents the flow

from the separator standpipe through the swirl vanes to the separator barrel. The vapor outlet junction J1

represents the flow out of the top of the separating barrel from the last separating stage and the liquid outlet
junction J2 represents the combined discharge passages of all of the stages. The following description of

the mechanistic separator model is adapted from Reference 3.5-1.

A separator component consists of three regions, a standpipe, the separator barrel, and the discharge

passage. Figure 3.5-5 shows a schematic of the first stage of a separator component. A two-phase mixture
enters the separator barrel from the standpipe, passing through a set of stationary swirl vanes attached to
the separator hub which acts as a bladed nozzle. These vanes produce a high rotational velocity component
in the fluid flowing through the separator barrel. The resultant centrifugal force separates the
vapor/gas-liquid mixture into a liquid vortex on the inner wall of the separating barrel and a vapor/gas
vortex core. Separation is accomplished by directing the liquid layer on the wall into the discharge passage
through pick-off rings at the exit of the separator barrel.

3.5.2.2.2  Assumptions and Model Equations--In this model, the following assumptions
are made for the axial location near the pick-off ring:

1. There is one uniform axial velocity in each of the flow regions, i.e.

0 < r < rf        :        va = vag      , uniform in vapor/gas core (3.5-2)

rf < r < rw      :        va = vaf      , uniform in liquid layer (3.5-3)

where rf is the inner radius of the liquid layer.

2. The tangential velocity in each region is proportional to C which is related to the vortex
strength, and is a function of r as follows:
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(3.5-4)

. (3.5-5)

3. The vapor/gas void fraction profiles are assumed as follows:

Figure 3.5-5 Schematic of first stage of mechanistic separator.
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(3.5-6)

(3.5-7)

and

(3.5-8)

(3.5-9)

(3.5-10)

where Xi is the inlet flow quality, and AA and BB are parameters to be fitted with data.

4. The pressure in the vapor/gas core (Po) is assumed to be uniform radially and axially, and

the pressure at the separator wall (Pw) is related to Po by centrifugal force across the liquid

layer.

For the first stage of the separator, a total of six unknowns are introduced in this model. These are
vag, vaf, C, rf, Po, and Pw. The required equations are formulated from conservation of liquid mass,

vapor/gas mass, axial momentum, and angular momentum entering and leaving the separating barrel, from
centrifugal pressure drop across the liquid layer and from pressure drop in the discharge passage. The
above unknowns can now be solved from given conditions of pressure, Pi, total flow rate, Wi, and flow

quality at the swirl vane inlet, Xi.

The mass and momentum conservation equations for flows entering and leaving the separating barrel
are

Liquid Mass

0 r rf      :      ≤ ≤ αg 1 b r
rw
----–=

rf r rw      :      ≤ ≤ αg a rw

r
---- 1– 

 =

a AA grw
2

C
------------

 
 
 

0.5

Xi
2= for Xi 0.15<

a AA grw
2

C
------------

 
 
 

0.5

0.09335( )Xi
0.75= , for Xi 0.15>

b BB grw
2

C
------------

 
 
 

0.5

1 Xi–( )3=
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(3.5-11)

Vapor/Gas Mass

(3.5-12)

Angular Momentum

. (3.5-13)

Axial Momentum

. (3.5-14)

Assuming that the flow through the swirl vane passages is homogeneous and that the swirl vane
passages act as a nozzle, the pressure and velocity entering the separating barrel are related to the
conditions in the standpipe as follows:

Wi  =  ρmi viAi  =  ρmivanAn (3.5-15)

(3.5-16)

(3.5-17)

1 Xi–( )Wi 2π 1 αg–( )ρfvar rd∫ 2πρfvag
1
3
---b rf

rw
----rf

2= =

2πρfvaf
1 a+

2
------------ 

  rw
2 rf

2–( ) arw rw rf–( )–   .+

XiWi 2π αgρgvgr rd
0

rw

∫ 2πρgvag
1
2
--- 1

3
---b rf

rw
----– 

  rf
2= =

2πρgvafa
1
2
--- rw rf–( )2  .+

Vtnr 2πrρmivan( ) rd
rh

rw

∫ vtr 2πrρva( ) r Ftrw+d
0

rw

∫=

πrh
2Po 2π ρmivan

2 Pn+( )r rd
0

rw

∫+ 2π ρva
2 P+( )r r Fa+d

0

rw

∫=

Pi
1
2
---ρmivi

2+ Pn
1
2
---ρmi van

2 vtn
2+( ) 1 CNOZ+( )+=

van

vtn
------- θtan=
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where θ is the angle between the swirl vanes and the horizontal plane, ρmi is the inlet mixture density, and

CNOZ is the contraction loss coefficient defined as

(3.5-18)

where An is the swirl vane flow area and Ai is the standpipe flow area.

Fa and Ft in Equations (3.5-13) and (3.5-14) are the axial and tangential components of the frictional

force on the swirling liquid layer, and are given by

(3.5-19)

(3.5-20)

where vtw is the tangential velocity on the wall, given by

(3.5-21)

and vw is the resultant swirling velocity on the wall, given by

(3.5-22)

Ff is the resultant frictional force, given by

. (3.5-23)

Assuming that the liquid film is thin with respect to the radius of curvature of the separator barrel, the
flow can be considered to be film flow over a flat plate. For turbulent flow over a flat plate, CF is given by

(3.5-24)

CNOZ 0.5 1 An

Ai
------– 

 =

Fa Ff
vaf

vw
------ 

 =

Ft Ff
vtw

vw
------- 

 =

vtw
C
rw

---------=

vw vtw
2 vaf

2+=

Ff
1
2
---ρfCFvw

2 2πrw( )HD=

CF
0.455

log10ReL( )2.58
---------------------------------=
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where ReL is defined as

. (3.5-25)

The radial pressure drop across the liquid layer due to centrifugal force is

(3.5-26)

or

. (3.5-27)

The pressure drop in the discharge passage is

(3.5-28)

where ρM,D and vD are the mixture density and mixture velocity in the discharge passage, HD and DD are

the length of the separator barrel and hydraulic diameter of the discharge passage, EFFLD is the effective
L/D coefficient at the pick-off ring, CK is the total loss coefficient in the discharge passage, H12 is the

height of the liquid pool surrounding the separator relative to the bottom of the discharge passage, and Hsk

is the axial distance between the separator hub and the bottom of the discharge passage.

For the discharge passage,

. (3.5-29)

ReL
ρvw

µ
---------

HDvw

Vaf
-------------=

Pd
P0

Pw

∫ ρ
vt

2

r
----- rd

rf

rw

∫=

Po Pw ρf a ρf ρg–( )+[ ]C2 1
rf
--- 1

rw
----– 

 – a ρf ρg–( )C2 rw

rf
---- 1

rr
--- 1

rw
----– 

 +=

1
2
---ρva

2 P+ 
 

rr

rw

∫ dA

Ad
rr

rw

∫
--------------------------------------- 1

2
---ρM D, vD

2 1 2CF
HD

DD
------- EFFLD+ 

  CK+ +=

Po ρfgH12  ρD– g HD Hsk+( )+[ ]+

CF
0.079
Re0.25
-------------=
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The vapor/gas and liquid flow rates discharged through the discharge passage are calculated as
follows:

(3.5-30)

For a liquid layer thicker than the gap between the pick-off ring and the separator barrel, i.e., rf < rr,

the vapor/gas and liquid flow rates through the discharge passage are

(3.5-31)

For a water layer thinner than the gap between the pick-off ring and the separator barrel wall, i.e., rr <

rf, the vapor/gas and liquid flow rates through the discharge passage are

(3.5-32)

The vapor/gas and liquid flow rates leaving the present stage and entering the next stage are

(3.5-33)

The total discharge flow rate is

WD  =  Wg,cu + Wf,cu . (3.5-34)

Assuming homogeneous flow in the discharge passage, the mean vapor/gas void fraction is

Wg cu, 2π αgρgvar rd
rr

rw

∫=

Wf cu, 1 αg–( )ρfvar r  .d
rr

rw

∫=

Wg cu, πρgvafa rw rw–( )2=

Wf cu, πρfvaf rw
2 rr

2–( ) a rw rr–( )2–[ ]  .=

Wg cu, XiWi 2πρgvag
1
2
--- 1

3
---b rr

rw
----– 

 –= rr
2

Wf cu, 1 Xi–( )Wi 2πρfvagrr
2 1

3
--- 

  b rr

rw
----   .–=

Wg co, vapor/gas flow rate( )in Wg cu,–=

Wf co, liquid flow rate( )in Wf cu,   .–=
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, (3.5-35)

the mixture density in the discharge passage is

ρM,D  =  αg,cuρg + (1 - αg,cu)ρf (3.5-36)

and the mixture velocity in the discharge passage is

. (3.5-37)

In summary, for given swirl vane inlet conditions, Pi, Xi, and Wi, the unknowns vag, vaf, C, rf, Po, and

Pw are calculated by solving Equations (3.5-11) to (3.5-28) simultaneously.

Similar equations can be written for the second- and third-stages. Since it is assumed that Po is

uniform axially, i.e., the vapor/gas core pressure drop in the axial direction is small, the axial momentum
equation can be neglected in the solution for the upper stages. For these stages, the unknowns are reduced
to vag, vaf, C, rf, and Pw, and the equations are the conservation of liquid mass, vapor/gas mass, angular

momentum, the pressure drop across the liquid layer, and the pressure drop in the discharge passage.

The right hand sides of Equations (3.5-11), (3.5-12), and (3.5-13) represent the liquid flow rate,
vapor/gas flow rate, and angular momentum entering the separator barrel. For the second- and third-stages,
these terms are modified as follows:

(3.5-38)

3.5.2.2.3  Carryover and Carryunder--The total vapor/gas flow rate that is carried under
consists of two parts; i.e., the vapor/gas flow through the first discharge passage which discharges its fluid
below the liquid level and the vapor/gas entrained by the liquid discharged from higher stages. The exits of
the discharge passages of the higher stages are located above the liquid level. It is assumed that the
entrainment is proportional to the square of the total liquid flow discharged from the higher stages, i.e.,

αg cu,
Wg cu,

Wg cu, Wf cu,
ρg

ρf
-----+

---------------------------------------=

vD
WD

ρM D, AD
-------------------=

Liquid flow rate( )in Wf co,( )previous stage=

Vapor/gas flow rate( )in Wg co,( )previous stage=

Angular momentum( )in Vtr 2πρva( )r rd
o

rr

∫
previous stage

  .=
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(3.5-39)

where

N = 2 for a two-stage separator

= 3 for a three-stage separator

and CC is a constant to be fitted with data.

The total liquid that is carried over consists of two parts, the liquid flow rate through the last stage
and the liquid flow rate entrained by the vapor/gas discharged from the higher stages through their
discharge passages. Similarly, the second part is assumed to be proportional to the square of the total
vapor/gas flow discharged from the higher stages, i.e.,

(3.5-40)

where DD is a constant to be fitted with data.

The carryunder and carryover are defined as

(3.5-41)

The parameters AA, BB, CC, and DD were tuned to fit the available test data3.5-2,3.5-3,3.5-4 for two-

and three-stage separators. Table 3.5-1 summarizes the values for these parameters.   

Table 3.5-1 Summary of fitted parameters in a mechanistic separator model.

2-Stage Separator 3-Stage Separator

Parameter 1st Stage 2nd Stage 1st Stage 2nd Stage 3rd Stage

AA 110. 20. 110. 20. 20.

BB 0.5 0.25 0.5 0.25 0.55

Wg cu,( )total Wg cu,( )1 CC Wf cu,( )i
i 2=

N

∑+=

Wf co,( )total Wf co,( )N DD Wg cu,( )i
i 2=

N

∑+=

CU
Wg cu,( )total

Total downward liquid flow rate
------------------------------------------------------------------------------=

CO
Wf co,( )total

Total upward vapor/gas flow rate
--------------------------------------------------------------------------------   .=
3-257 INEEL-EXT-98-00834-V1



ATHENA/2.3
3.5.2.2.4  Chevron Dryer Model--The vapor/gas dryer uses chevron vanes to remove the
moisture which is discharged from the vapor/gas separators. The vanes provide a curved path which the
liquid droplets must follow if they are to flow through the dryer. If the interfacial force is too low, it cannot
drag the liquid droplets along the curved path due to their inertial and they hit the vanes, are de-entrained,
and the resultant liquid film flows down the vanes under the force of gravity into collecting trays and then
back to the liquid pool surrounding the separators. If the vapor/gas velocity is high, it exerts a larger
interfacial force on the droplets and more of the entrained liquid gets through the dryer vanes. Thus the
dryer efficiency depends on the vapor/gas velocity and the moisture content of the vapor/gas flow entering
the dryer. For a given vapor/gas inlet velocity, there is a critical dryer inlet moisture. Good moisture
separation is achieved if the inlet moisture is lower than the critical value. If the inlet moisture is above the
critical value, the dryer separating capacity is exceeded and the moisture can pass through the dryer.

The dryer capacity is simulated by a capacity factor GDRY which is defined in the following way.
For a given vapor/gas velocity v at the inlet to the dryer, the critical dryer inlet moisture CDIM is
calculated as 

CDIM  =  1                                              v < VDRY1

(3.5-42)

             =  0                                            VDRY2 < v

where CDIM is the critical inlet moisture, VDRY1 is the vapor/gas velocity below which any amount of
moisture is assumed to be separated from the vapor/gas stream, and VDRY2 is the vapor/gas velocity
above which no amount of moisture, however small, can be separated from the vapor/gas stream.

The dryer inlet moisture (DIM) is computed assuming homogeneous flow as

(3.5-43)

CC 0.0004 --- 0.0004 --- ---

DD 0.009 --- 0.11 --- ---

Table 3.5-1 Summary of fitted parameters in a mechanistic separator model. (Continued)

2-Stage Separator 3-Stage Separator

Parameter 1st Stage 2nd Stage 1st Stage 2nd Stage 3rd Stage

   1 v VDRY1–
VDRY2 VDRY1–
------------------------------------------------        VDRY1 v VDRY2< <–=

DIM 1 αg

αg 1 αg–( )
ρf

ρg
-----+

--------------------------------------–=
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where αg, ρf, and ρg are the vapor/gas void fraction, liquid density, and the vapor/gas density in the dryer.

The capacity factor GDRY is defined as

GDRY  =  1                                         DIM < CDIM

(3.5-44)

              =  0                                        (CDIM + DELDIM) < DIM

where DELDIM is the range of inlet moisture over which the dryer capacity goes from one to zero for a

fixed vapor/gas inlet velocity. These relations are shown schematically in Figure 3.5-6.

The capacity factor GDRY is used to modify the void fraction in the dryer outlet junction such that if
the dryer capacity is one, the donored void fraction is one; if the dryer capacity is zero, the regular donor
void fraction is used, and if the dryer capacity is between zero and one, the void fraction is interpolated
between the values for the capacities of zero and one.

3.5.3  Jet Mixer

There are several components in a typical reactor plant where the momentum effects due to the
mixing of two parallel streams of fluid at different velocities may be important. An example of this is the

Figure 3.5-6 Dryer capacity.
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jet pump in a BWR. In this component, the pumping action is caused by the momentum transfer between
the two fluid streams. Momentum effects may also be important for the aspirators present in some
vapor/gas generators. The JETMIXER component was developed for these cases. Momentum effects may
also be important for mixing at ECC injection points, and the ECCMIX component (Section 3.5.8) was
developed for this case.

3.5.3.1  Basic Jet Mixing Model. The basic approach for modeling the jet mixing process is to
superimpose a quasi-steady model for the mixing process on the normal volume-junction flow path
representation used in ATHENA. To derive the momentum equations needed to model a jet mixing
situation, consider the schematic shown in Figure 3.5-7, which illustrates a mixing volume connected to a

drive and a suction volume.a The suction junction (with velocity vS and area AS) connects the last
upstream suction region volume, KS, to the mixing volume, L. The drive junction (with velocity vD and
area AD) connects the last upstream drive line volume, KD, to the mixing volume, L. Figure 3.5-7 shows

the drive junction as a smooth junction and the suction junction as abrupt. The user can model either
junction either way if the appropriate loss factors are included (see input guidelines in Volume II of this
manual). Volume fractions and densities subscripted by a D or S are donored values; a subscript a indicates
an average value.

The mixing of the drive and suction flows between cross-section 1 and 2 requires a reevaluation of
the momentum flux terms. The wall drag, interphase drag, temporal acceleration, momentum exchange
due to mass transfer, and gravity head terms for the drive and suction junctions are treated exactly as they
are at any other junction. Only the pressure and momentum flux terms will be examined in the following
momentum equation development.

a. The drive and suction junctions should be the high-speed and low-speed junctions respectively when the

JETMIXER component is used for other than jet pump applications.

Figure 3.5-7 Schematic of mixing junctions.

Section 1 Section 2

Suction
region KS

vKS

KD vD

vS
vL

vKDDrive
line

L
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Consider a control volume in the mixing region between cross-sections 1 and 2 and assume the
following: (a) steady single-phase flow; (b) one-dimensional flow at cross-sections 1 and 2; (c) equal
pressures at junctions D and S; and (d) constant area in the mixing region. If we apply the conservation of
momentum principle for this control volume with these assumptions, the momentum equation becomes

. (3.5-45)

Conservation of mass applied with these same assumptions gives

ρLvLAL - ρSvSAS - ρDvDAD  =  0 . (3.5-46)

Equation (3.5-46) can be used to write Equation (3.5-45) in an expanded form, obtaining

. (3.5-47)

Equation (3.5-47) gives the momentum equation (pressure and flux terms) for the upstream half of
the mixing volume. To develop the momentum equation for the suction junction, a normal ATHENA
half-cell momentum equation is written from KS to cross-section 1, i.e.,

. (3.5-48)

Adding this to the half cell momentum Equation (3.5-47) for cross-sections 1 to L (Section 2) gives

. (3.5-49)

This equation shows how the pressure and momentum flux terms should be calculated for the suction
junction equation.

If the suction junction were a normal junction, its momentum equation (pressure and flux terms)
would be

. (3.5-50)

PL P1–( )AL ρLvL
2 AL ρSvS

2AS– ρDvD
2 AD–+ 0=

PL P1–
ρSvSAS vL vS–( )

AL
----------------------------------------

ρDvDAD vL vD–( )
AL

-------------------------------------------+ + 0=

P1 PKS– 1
2
---ρKS vS

2 vKS
2–( )+ 0=

PL PKS– 1
2
---ρKS vS

2 vKS
2–( )

ρSvSAS vL vS–( )
AL

----------------------------------------+
ρDvDAD vL vD–( )

AL
-------------------------------------------++ 0=

PL PKS– 1
2
---ρS vL

2 vKS
2–( )+ 0=
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The velocity terms in Equation (3.5-50) must be replaced by the velocity terms in Equation (3.5-49)
to correctly model the momentum equation at the suction junction. Similar equations for the drive junction
can be obtained.

3.5.3.2  Jet Mixing in Two-Phase Flows. If a derivation similar to the previous section is
carried out for the pressure and momentum flux terms in the two-phase case, the following equations are
obtained for the liquid phase in the mixing region:

Conservation of momentum (from cross-section 1 to L),

. (3.5-51)

Conservation of mass (from cross-section 1 to L),

αfLρLvfLAL - αfSρfSvfSAfS - αfDρfDvfDAD  =  0 . (3.5-52)

Using Equation (3.5-52) in Equation (3.5-51) and rewriting Equation (3.5-45) in expanded form
yields

. (3.5−53)

Equation (3.5-53) can now be combined with the appropriate half-cell momentum equation for the
upstream volume to obtain the final momentum equation for the liquid flow at the suction junction. A
parallel development gives the vapor/gas phase momentum equation at the suction junction.

The momentum equations used consist of the sum of the phasic momentum equations and the
difference of the phasic momentum equations. To derive the sum momentum equation (pressure and flux
terms only) for the suction junction, Equation (3.5-53) for the liquid phase is added to a similar equation
for the vapor/gas phase to obtain

(3.5-54)

The normal half-cell sum momentum equation (pressure and flux terms only) for the upstream
suction volume can then be added to Equation (3.5-54) to give

αfLAL PL P1–( ) αfLρfLvfL
2 AL αfSρfSvfS

2 AS– αfDρfDvfD
2 AD–+ 0=

αfL PL P1–( )
αfSρfSvfSAS vfL vfs–( )

AL
------------------------------------------------------

αfDρfDvfDAD vfL vfD–( )
AL

----------------------------------------------------------+ +

PL P1–
αfSρfSvfSAS vfL vfS–( )

AL
------------------------------------------------------

αfDρfDvfDAD vfL vfD–( )
AL

----------------------------------------------------------+ +

αgSρgSvgSAS vgL vgS–( )
AL

----------------------------------------------------------
αgDρgDvgDAD vgL vgD–( )

AL
-------------------------------------------------------------+ + 0  .=
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(3.5-55)

as the final form for the pressure and momentum flux terms in the new sum momentum equation for the
suction junction. The pressure term in this equation has exactly the same form as the pressure term in the
normal sum momentum equation. A parallel equation holds for the drive junction. Hence, at the drive and
suction mixing junctions, the normal momentum flux terms in the sum momentum equation must be
replaced by those in Equation (3.5-55).

The difference momentum equation for the suction junction is derived by dividing the liquid

momentum mixing Equation (3.5-53) by αfL and adding it to the half-cell liquid momentum equation for

the upstream suction volume (also divided by the appropriate volume fraction, αfKS) to obtain

(3.5-56)

Next, Equation (3.5-56) is divided by the average junction liquid density, ρfa, and subtracted from

the corresponding vapor/gas equation to obtain

(3.5-57)

as the final difference momentum equation to be used at junction S. A parallel equation must be used at the
drive junction. The pressure term in Equation (3.5-57) has exactly the same form as the pressure term in
the normal difference momentum equation. Hence, at the drive and suction mixing junctions the normal

PL PKS–
αfSρfSvfSAS vfL vfS–( )

AL
------------------------------------------------------

αfDρfDvfDAD vfL vfD–( )
AL

----------------------------------------------------------+ +

αgSρgSvgSAS vgL vgS–( )
AL

----------------------------------------------------------
αgDρgDvgDAD vgL vgD–( )

AL
-------------------------------------------------------------+ +

1
2
---αfKSρfKS vfS

2 vfKS
2–( ) 1

2
---αgKSρgKS vgS

2 vgKS
2–( )++ 0=
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αfSρfSvfSAS vfL vfS–( )

αfLAL
------------------------------------------------------

αfDρfDvfDAD vfL vfD–( )
αfLAL

----------------------------------------------------------+ +
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2
---

αfKSρfKS

αfKS
--------------------- vfS

2 vfKS
2–( )+ 0  .=

ρf ρg–
ρfρg

---------------- 
 

a
PL PKS–( )

αgSρgSvgSAS vgL vgS–( )
αgLρgaAL
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αgLρgaAL

------------------------------------------------------------- 1
2
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αgKSρgKS vgS
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----------------------------------------------------+ +
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αfLρfaAL

------------------------------------------------------–
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αfLρfaAL
----------------------------------------------------------–

 1
2
---
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αfKSρfa

-------------------------------------------------– 0=
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momentum flux terms in the difference momentum equation must be replaced by those in Equation
(3.5-57).

Mathematically the αgKS terms in the fourth term of Equation (3.5-57) cancel and the αfKS terms in the

seventh term of Equation (3.5-57) cancel. In a physical system, the velocity of the non-existent phase
would be zero, contributing no momentum to the momentum balance. The ATHENA model of the
non-existent phase, however, sets the phasic velocity to that of the existing phase. Hence the non-existent

phase would contribute some erroneous momentum to the momentum balance if the αfKS or αgKS terms

cancel. To fix this problem, the correct single phase limits are preserved in the coding by replacing the

αgKS in the denominator of the fourth term of Equation (3.5-57) by max(αgKS,10-7) and by replacing the

αfKS in the denominator of the seventh term of Equation (3.5-57) by max(αfKS,10-7).

The correct single phase limit is also protected in the second and third terms of Equation (3.5-57) by

replacing the αgL in the denominator by max(αgL,10-7) and in the fifth and sixth terms of Equation

(3.5-57) by replacing the αfL in the denominator by max(αfL,10-7).

3.5.3.3  Associated Flow Losses. The flow in the mixing region of volume L can in reality be
either a true jet mixing or a flow split (for reverse flow). The flow split case is governed by different
physics than the jet-mixing case considered in the previous discussions. The redistribution that occurs
when the flow splits is primarily determined by the effective resistances downstream of the separation
point in the suction and drive flow paths. The mixing terms derived above do not apply. For this reason, the
additional mixing terms are applied only for the positive-drive flow regimes. The normal momentum flux
calculations are used for the negative-drive flow regimes.

The junctions associated with the JETMIXER component can be modeled as smooth or abrupt. If the
junctions are input as smooth, then the appropriate flow resistances should be calculated in a standard
fashion and input as form loss coefficients at the appropriate junctions by the user.

If the junctions in the JETMIXER component are input as abrupt area changes, then the code will
calculate form loss coefficients as usual except that (a) the forward loss coefficients at the drive and
suction junctions are set to zero and (b) the reverse loss coefficients for the suction and drive junctions are
those associated with the expansions from the junction areas to the suction or drive volume areas. The
forward losses at these junctions are actually associated with the expansion from the vena-contracta to the
downstream mixing volume flow area. For parallel mixing streams, this loss is no longer appropriate. The
losses associated with any contraction from the mixing volume to the suction or drive junctions are
neglected for the same reason.

If the above normal flow losses are used when the suction flow reverses, it will be found that jet
pump performance (head ratio) in this regime is significantly below the experimental data. The reverse
flow loss coefficient applied in the suction junction has a significant effect on the jet pump performance in
this flow situation. This loss coefficient (in addition to the normal loss coefficient associated with the
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expansion from AS to area AKS) represents all the irreversible losses associated with the turning and

expansion of the flow from the drive junction. Because this flow regime is an important regime in the
accident analysis of a BWR, it was decided to include an approximation for this flow-dependent loss in the
jet mixing model.

This reverse suction flow loss was based upon the expansion losses experienced by the flow as it
moves from the drive to the suction junction. Two flow situations with reversed suction flow and positive

drive flow are possible, depending upon the flow direction in the mixing section (Figure 3.5-8). In the first
situation, the expansion loss associated with the area change AD to AS, i.e.,

(3.5-58)

is added to the user-specified reverse loss coefficient (or the standard abrupt area change loss factor if the
junction is input as abrupt) for the suction junction. In the second situation, the effective area for the
suction flow that comes from the drive junction is less than AS because the discharge flow is reversed. In

this situation, the effective areas for the expansion loss are AD and . Hence, for the second

situation, the loss coefficient given by

(3.5-59)

is added to the user-specified reverse loss coefficient (or the abrupt area loss factor if the junction is input

as abrupt) at the suction junction only if . If , the drive-to-suction flow is

effectively a contraction, and the additional loss coefficient is set to zero.

Figure 3.5-8 Flow regimes and dividing streamline.
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Since the jet mixing and effective resistances are modeled by special terms in the suction and drive
junction momentum equations, the normal losses associated with the partitioning of volume L are not
included in these junction equations. However, the normal losses associated with the area ratios
experienced by the flow upstream of the suction and drive junctions are retained in the junction momentum
equations.

3.5.3.4  Numerical Implementation. The basic numerical algorithm used to evaluate the new
momentum flux terms in Equations (3.5-55) and (3.5-57) is similar to the numerical evaluation of the
normal momentum flux terms. The normal momentum flux terms are calculated explicitly at the n-th time
level. The new momentum flux terms in Equations (3.5-55) and (3.5-57) are also explicitly evaluated, and
the spatial location of each variable is indicated by its subscript.

3.5.4  Pump

The ATHENA pump model is almost identical to the RELAP5/MOD1 pump model,3.5-5 which was

originally adapted from the RELAP4 pump model.3.5-6 The pump model was originally developed by

Farman and Anderson3.5-7 for the RELAP3 code, and then it became the accepted methodology in the
RELAP4 and RELAP5 codes. The only significant difference is that in ATHENA, there is the added
capability of linking the pump to a shaft component. The pump can be linked to a shaft component, and
thus can be driven by either a motor or a turbine. The RELAP5/MOD1 options for a motor-driven pump
were retained so that input changes to an existing plant model using the pump are not required unless it is
desired to make use of the shaft coupling.

The basic approach to pump modeling is to superimpose a quasi-static model for pump performance
on the ATHENA volume-junction flow path representation. The pump is a volume-oriented component,
and the head developed by the pump is apportioned equally between the suction and discharge junctions
that connect the pump volume to the system. The pump model is interfaced with the two-fluid
hydrodynamic model by assuming the head developed by the pump is similar to a body force. Thus, the
head term appears in the mixture momentum equation; but, like the gravity body force, it does not appear
in the difference momentum equation used in ATHENA. The term that is added to the mixture momentum

equation is (1/2)ρmgH, where H is the total head rise of the pump (m), ρm is the volume fluid density

(kg/m3), and g is the acceleration due to gravity (m/s2). The factor 1/2 is needed because the term is
applied at both the suction and discharge junctions.

In both the semi-implicit and nearly-implicit numerical schemes, the pump head is coupled implicitly
to the velocities through its dependence on the volumetric flow rate, Q. The volumetric flow rate is defined
as the volume mass flow rate divided by the volume density. It is assumed that the head depends on the
volumetric flow rate, and can be approximated by a two-term Taylor series expansion given by

. (3.5-60)Hn 1+ Hn dH
dQ
------- 

  n
Qn 1+ Qn–( )+=
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Thus, the numerical equivalent of the term ρgH in both schemes is

. (3.5-61)

This term is added to the right side of the mixture momentum Equation (3.1-104). For the
semi-implicit scheme, only one of the junction velocities is made implicit (the junction for which the new
time velocity is calculated). For the nearly-implicit scheme, both junction velocities are made implicit
simultaneously.

The pump energy dissipation is calculated for the pump volume as

(3.5−62)

where τ is the pump torque and ω is the pump angular rotation speed. This can be viewed as follows; the

total pump power added to the fluid by the pump (τω) is separated into a hydraulic term
 and a dissipation term (DISS). The dissipation term arises from turbulence in

the pump and is added to the pump volume as heat. In a closed system, the hydraulic head from the pump
is balanced by the sum of wall friction losses and form losses in the momentum equation. These losses
should also appear as energy source terms in the energy equation, but only the wall friction terms are
implemented in the default code. The default code should also add the form loss (code calculated abrupt
area change loss and user-supplied loss) dissipation to the energy equation. This dissipation was removed
in RELAP5/MOD2 because of temperature problems (i.e., overheating), and thus it is not present in
ATHENA. The dissipation can be activated by the user in the input deck, however the user is cautioned
that temperature problems may occur.

This term is evaluated explicitly in both the semi-implicit and nearly-implicit schemes, and it is
partitioned between the liquid and vapor thermal energy equations in such a way that the rise in
temperature due to dissipation is equal in each phase. (The details of the dissipation mechanism in a
two-phase system are unknown, so the assumption is made that the mechanism acts in such a way that
thermal equilibrium between the phases is maintained without phase change.) Thus, the terms that are
added to the right sides of the liquid and vapor/gas thermal energy equations, Equations (3.1-91) and
(3.1-92), for the pump volumes are

(3.5-63)

and

1
2
---ρm

n gHn∆t 1
2
---ρm

n g dH
dQ
------- 

  n
Qn 1+ Qn–( )∆t+

DISS τnωn gHn αf
nρf

nvf
n αg

nρg
nvg

n+( )A–=

gH αfρfvf αgρgvg+( )A[ ]

DISSf τnωn gHn αf
nρf

nvf
n αg

nρg
nvg

n+( )A–[ ]∆t αf
nρf

nCpf
n

αf
nρf

nCpf
n αg

nρg
nCpg

n+
-----------------------------------------------

 
 
 

=
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(3.5-64)

respectively.

The pump head, H, and torque, τ, are defined by means of an empirical homologous pump

performance model, and the pump speed, ω, is defined by a pump drive model. The derivative of the pump

head with respect to the volumetric flow rate, , is obtained from the empirical steady-state homologous

pump performance model, using the assumption that the pump speed is constant.

3.5.4.1  Centrifugal Pump Performance Model. The basic pump performance data must be
generated experimentally. Analytical programs have been developed that are reasonably successful in
predicting near-design pump performance for single-phase fluids. However, for off-design operation or for
operation with a two-phase fluid, the problems of analytical pump performance prediction are nearly
insurmountable. The basic parameters that characterize the pump performance are the rotational speed, ω,
the volumetric flow, Q, the head rise, H, and the shaft torque, τ. The relationship between these four
parameters can be uniquely displayed by a four-quadrant representation of such data. A typical
four-quadrant curve is shown in Figure 3.5-9. Both positive and negative values for each of the four
parameters are represented. The disadvantages in using such a data map for numerical purposes are the
need for two-dimensional interpolation, the large number of points needed to define the entire range, and
the fact that the map is infinite in extent. These objections can be largely overcome by use of a homologous
transformation based on the centrifugal pump similarity relationships. Such a transformation collapses the
four-quadrant data onto a single, bounded, dimensionless curve having eight octants. Typical homologous
curves for the head and torque are illustrated in Figure 3.5-10 and Figure 3.5-11, respectively, where ωR,

QR, HR, and τR are the rated values for the pump speed, volumetric flow rate, head, and torque,

respectively. Details on generating the homologous curves are presented in Volumes II and IV. The
homologous transformation is not unique, and not all points of Figure 3.5-9 lie on the curves of Figure
3.5-10 and Figure 3.5-11. However, the data are closely grouped, and the single curve is a good
approximation for pump performance. The pump model allows the user the option of accounting for
two-phase degradation effects on pump performance.

The two-phase degradation model is based on experimental data. Available pump data from the 1-1/2
Loop Model Semiscale and Westinghouse Canada Limited (WCL) experiments were used in developing
the two-phase pump model. The single-phase pump head (dimensionless) curves for the Semiscale pump

are shown in Figure 3.5-12, and the fully degraded two-phase pump head curves for the Semiscale pump

are shown in Figure 3.5-13. These represent complete pump characteristics (except for the reverse pump
fully degraded region) for the Semiscale pump operating under two-phase conditions, with the average of
the void fractions of the pump inlet and outlet mixtures between 0.2 and 0.9. The lines drawn through the
data were determined by least-squares polynomial fits to the data using known constraints.

DISSg τnωn gHn αf
nρf

nvf
n αg

nρg
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n+( )A–[ ]∆t αg
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A comparison of the two-phase data in Figure 3.5-13 with the single-phase data in Figure 3.5-12

shows that the two-phase dimensionless head ratio (h/v2 or h/α2) is significantly less than the single-phase
dimensionless head ratio for the normal pump operation region (HAN and HVN). For negative ratios of

v/α, such as those that occur in the HAD region, the pump flow becomes negative. When the pump flow is
negative, the two-phase dimensionless head ratio is greater than the single-phase dimensionless head ratio.
Two-phase flow friction losses are generally greater than single-phase losses, and friction is controlling in

Figure 3.5-9 Typical pump characteristic four-quadrant curves.
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this energy dissipation region (HAD). The other regions of two-phase dimensionless head ratio data show
similar deviations from single-phase data, with the exception of regions HAR and HVR (show no
deviations).

Table 3.5-2 presents the difference between the single- and two-phase dimensionless head ratio data

as a function of v/α and α/v for the various pumping regions shown in Figure 3.5-12 and Figure 3.5-13
where

Figure 3.5-10 Typical pump homologous head curves.
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(3.5-65)

Figure 3.5-11 Typical pump homologous torque curves.
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The differences shown in Table 3.5-2 are for the eight curve types used for determining pump head.

Figure 3.5-12 Single-phase homologous head curves for 1-1/2 loop MOD1 Semiscale pumps.

HAD
(3)

HVD
(4)

(7)

HAR

HVR

-0.5

(8)

1.5

1.0

0.5

0.0 0.5

-0.5

HAT
(5)

HAN
(1)

HVT
(6)

HVN (2)

h/v2 or h/α2

h = H/HR (head ratio)
v = Q/QR (flow ratio)

Normal pump 

Energy dissipation

Normal turbine

Reverse pump

(+ Q, + ω)

(- Q, + ω)

(- Q, - ω)

(+ Q, - ω)

HAN
HVN
HAD
HVD
HAT
HVT
HAR
HVR

{

{

{

{

α/v or v/α

α = ω/ωR (speed ratio)
INEEL-EXT-98-00834-V1 3-272



ATHENA/2.3
 

Figure 3.5-13 Fully degraded, two-phase homologous head curves for 1-1/2 loop MOD1 Semiscale 
pumps.

Table 3.5-2 Semiscale dimensionless head ratio difference data (single-phase minus two-phase).

Curve type x y Curve type x y

1 (HAN) 0.00 0.00 4 (HVD) -1.00 -1.16

0.10 0.83 -0.90 -0.78

0.20 1.09 -0.80 -0.50

0.50 1.02 -0.70 -0.31

0.70 1.01 -0.60 -0.17

0.90 0.94 -0.50 -0.08

1.00 1.00 -0.35 0.00

-0.20 0.05

2 (HVN) 0.00 0.00 -0.10 0.08

0.10 -0.04 0.00 0.11

5

4

3

2

1

0

-1

HAT

HVT

HAN

HVN

HVD

-0.5 0.5

HAD

α/v or v/α

h/α2 or h/v2

HAR

HVR
3-273 INEEL-EXT-98-00834-V1



ATHENA/2.3
The head multiplier, MH(αg), and void fraction data shown in Table 3.5-3 were obtained in the

following manner. The Semiscale and WCL pump data3.5-6 were converted to dimensionless head ratios of

h/α2 or h/v2. Values of the dimensionless head ratios were obtained for pump speeds and volumetric flow
rates within 50% of the rated speed and flow rate for the pumps. The difference between the single- and
two-phase dimensionless ratios was developed as a function of the average void fractions for the pump

0.20 0.00

0.30 0.10 5 (HAT) 0.00 0.00

0.40 0.21 0.20 -0.34

0.80 0.67 0.40 -0.65

0.90 0.80 0.60 -0.93

1.00 1.00 0.80 -1.19

  1.00 -1.47

3 (HAD) -1.00 -1.16

-0.90 -1.24 6 (HVT) 0.00 0.11

-0.80 -1.77 0.10 0.13

-0.70 -2.36 0.25 0.15

-0.60 -2.79 0.40 0.13

-0.50 -2.91 0.50 0.07

-0.40 -2.67 0.60 -0.04

-0.25 -1.69 0.70 -0.23

-0.10 -0.50 0.80 -0.51

0.00 0.00 0.90 -0.91

1.00 -1.47

7 (HAR) -1.00 0.00

0.00 0.00

8 (HVR) -1.00 0.00

0.00 0.00

Table 3.5-2 Semiscale dimensionless head ratio difference data (single-phase minus two-phase).

Curve type x y Curve type x y
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inlet and outlet mixtures. The difference between the single- and two-phase dimensionless ratios was then
normalized to a value between 0 and 1.0. The normalized result was tabulated as a function of the void
fraction.

If the two-phase option is selected, the pump head and torque are calculated from

H  =  H1φ - MH(αg) (H1φ - H2φ) (3.5-66)

τ  =  τ1φ - Mτ(αg) (τ1φ - τ2φ) (3.5-67)

where

1φ = single-phase value

2φ = two-phase, fully degraded value, 0.2 < αg < 0.9

M = multiplier on difference curve as a function of αg.

Assumptions inherent in the pump model for two-phase flow include

• The head multiplier, MH(αg), determined empirically for the normal operating region of

the pump, is also valid as an interpolating factor in all other operating regions.

• The relationship of the two-phase to the single-phase behavior of the Semiscale pump is
applicable to large reactor pumps. This assumes that the pump model of two-phase flow is
independent of pump specific speed.

Table 3.5-3 Head multiplier and void fraction data.

αg MH(αg)

0.000 0.00

0.070 0.00

0.080 0.74

0.165 1.00

0.900 1.00

1.000 0.00
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3.5.4.2  Centrifugal Pump Drive Model. The pump torque is used to calculate the pump speed
(ω) after the pump has been shut off by the input trip signal. The speed is calculated by the deceleration
equation

. (3.5-68)

The finite difference approximation of this equation is

(3.5-69)

where

τ = net torque

I = moment of inertia

t = time

∆t = time step

ω = angular velocity (pump speed).

The rate of energy addition to the pump system is given by τω and has been used in Equation
(3.5-62) to calculate the pump dissipation.

The total pump torque is calculated by considering the hydraulic torque from the homologous curves
and the pump frictional torque. The net torque with the drive motor shut off is

τ   =  τhy + τfr (3.5-70)

where

τhy = hydraulic torque

τfr = frictional torque.

The hydraulic torque is calculated from the homologous curves by 

Idω
dt
------- τ=

ωt ∆ t+ ωt
τ∆t

I
--------+=
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(3.5-71)

where  is the dimensional homologous curve torque, ρm is the fluid mixture density, and ρR is the rated

fluid density.

The frictional torque is in the form of a constant or in the form of a four-term equation that depends
on the  speed ratio as described in the input manual (Volume II, Appendix A). The value of the frictional
torque is also dependent on the sign of the pump speed. An option is available to specify whether reverse
rotation of the pump is allowed.

The pump moment of inertia is in the form of a constant or in the form of a cubic equation that
depends on the speed ratio as described in the input manual (Volume II, Appendix A).

The electric drive motor will affect the speed behavior of the pump while the motor remains
connected to its power source. The net torque with the drive motor on is incorporated into the pump model

by adding the value of motor torque, τm, to the torque summation

τ  =  τhy + τfr - τm (3.5-72)

where the sign of the motor torque is the same as that of the hydraulic and frictional torque for steady
operating conditions, that is, zero net torque.

Induction motors are used to drive primary coolant pumps. At constant voltage, the motor torque is
an explicit function of speed. This torque/speed relationship is normally available from the motor
manufacturer.

Motor torque is supplied to the pump model as a tabular function of torque versus speed as given by

the manufacturer’s data. A typical torque/speed curve for an induction motor is shown in Figure 3.5-14.

The capability to simulate a locked-rotor condition of the pump is included in ATHENA. This option
provides for simulation of the pump rotor lockup as a function of input elapsed time, maximum forward
speed, or maximum reverse speed. At the time the rotor locks (and at all times thereafter), the pump speed
is set equal to zero.

3.5.5  Turbine

A turbine is a device that converts energy contained in high-pressure fluid to mechanical work. The
complicated configuration of a turbine precludes a complete first-principles model, at least for the purpose
of system transient calculations. A lumped-parameter turbine model is used in ATHENA wherein a
sequence of turbine stages (henceforth referred to as a stage group) is treated as a single-junction and

τhy τho
ρm

ρR
------ 

 =

τho
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single-volume. The stage group is then represented using modified energy, continuity, and momentum
equations. An efficiency factor based upon simple momentum and energy considerations is used to
represent the nonideal internal processes.

A turbine can be modeled using a single-stage group, i.e., a single-volume and single-junction, or
several stage groups depending upon the resolution required. If turbine vapor/gas is extracted to preheat
the feedwater, then several stage groups may be needed to obtain the correct vapor/gas properties at the
feedwater heating bleed points. All such bleed points are modeled as crossflow junctions in the ATHENA
model.

3.5.5.1  Model Design. The normal unmodified volume continuity equations are used for the stage
group, with a representative nozzle throat area for the inlet junction and the last stator nozzle throat
discharge area as the outlet junction area. It is important to use the same representative nozzle area at both
junctions.

3.5.5.1.1  Momentum Equations--Unlike the continuity equations, the momentum equations are
modified by the work extracted in the rotating blade system of each stage group. To develop the general
form for the momentum equations, we first consider a steady-state total energy balance for a homogeneous

Figure 3.5-14 Torque versus speed, Type 93A pump motor (rated voltage).
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fluid passing through a stage group (Figure 3.5-15). We will subsequently extend this general form to that
used for the two-fluid system.

Although the fluid particles follow a tortuous path through the turbine, we can still write a total

energy balance between cross-sections 1 and 2 (Figure 3.5-15). For a steady-state situation, this gives

(3.5−73)

where

ρ = the density

v = the velocity

h =  the specific enthalpy

A = the cross-sectional area.

The term W represents the shaft work per unit mass extracted from the fluid. Heat loss is neglected in

this ideal analysis. From continuity considerations, ρvA is constant. Dividing Equation (3.5-73) by ρvA,
we obtain

. (3.5-74)

Figure 3.5-15 A schematic of a stage group with idealized flow path between Points 1 and 2.
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In this way, the energy balance is converted into an equivalent force balance (power = force x
velocity).

In this idealized process where external heat loss and internal dissipation are neglected, the process is
isentropic and

. (3.5-75)

Integrating Equation (3.5-75) approximately (assuming constant density) between points 1 and 2
gives

(3.5-76)

where ρ is an average density.

The actual work per unit mass, W, produced by the fluid on the rotating blades as its momentum is
changed, is usually written as an efficiency factor times the isentropic specific enthalpy change across the
stage and becomes

. (3.5-77)

If a constant efficiency and density for the stage group is assumed, Equation (3.5-77) can be
approximated as

. (3.5-78)

When Equations (3.5-76) and (3.5-78) are substituted into Equation (3.5-74), we obtain

(3.5-79)

as the momentum equation for this steady-state case. Equation (3.5-79) shows that only a small fraction, (1

- η), of the pressure gradient contributes to changes in the kinetic energy of the fluid. The larger fraction,

η, of the pressure gradient results in turbine work [Equation (3.5-78)].

dh 1
ρ
---dP=

h2 h1– 1
ρ
--- P2 P1–( )=

W  η dh
S const=

∫–  η 1
ρ
---dP

S const=
∫–= =

W  η1
ρ
--- P2 P1–( )–=

1
2
---v2

2 1
2
---v1

2–  1 η–( )
ρ

----------------- P2 P1–( )–=
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Using Equation (3.5-79) as a prototype, the full two-fluid momentum equations which are used in the
turbine model are (in differential form)

(3.5-80)

. (3.5-81)

The application guidelines will be summarized in Volume II of this report, but it seems appropriate at
this point to mention three guidelines that are related to the momentum equation development:

1. In practice, a turbine does not usually contain significant liquid, and the tortuous path
precludes accurate modeling of the interphase drag. Therefore, it is recommended that the
homogeneous option be used at all axial turbine junctions. The effect of condensation
could be included in the efficiency factor, if desired. At present, it is not included, as the
effect is usually small.

2. The fluid path through the turbine volume is very tortuous. This, coupled with the large
number of blades, makes the standard wall friction calculation meaningless. For this
reason, the wall friction terms have not been shown in Equations (3.5-80) and (3.5-81). It
is recommended that the turbine volume wall friction flag be set to use the zero wall
friction option. If the user wants to include any momentum effects due to frictional or
form losses, it should be done with an appropriate user-specified form loss.

3. The area changes in a turbine are gradual, so the smooth junction option should be used.

3.5.5.1.2  Energy Equations--The ATHENA turbine component conserves energy in that the
power extracted from the fluid matches the power added to the shaft. An appropriate heat source is used
that, when added to the turbine energy equation, causes the hydraulic and shaft powers to match.

For steady, single phase flow, the thermal energy equation can be written [see Equation (3.1-84)] as

(3.5-82)

where   is the mass flow rate, U is the specific internal energy, P is the pressure, ρ is the density, is the

power added to the volume due to heat transfer from structures, and j and j+1 refer to the two adjecent
junctions. Using subscripts 1 and 2 to denote the inlet and outlet junctions and using the same pressure at
both junctions [see Equations (3.1-91) ], Equation (3.5-82) can be written as

αgρg( )
∂vg

∂t
-------- vg

∂vg

∂x
--------+ 

  αg 1 η–( )∂P
∂x
------– αgρgHLOSSG vg– αgρg FIG vg vf–( )–=

αfρf( )
∂vf

∂t
------- vf

∂vf

∂x
-------+ 

  αf 1 η–( )∂P
∂x
------– αfρfHLOSSF vf– αfρf FIF vf vg–( )–=

m· U( )j
j 1+ Pm·

ρ
---- 

 
j

j 1+

+ Q·=

m· Q·
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(3.5-83)

Rewriting in terms of specific enthalpy, h, yields

(3.5-84)

Applying the same assumptions across the turbine, and neglecting the heat transfer term, the total energy

equation can be written as (see Reference 3.5-8)

(3.5-85)

where v is the fluid velocity and  is the rate of work done by the fluid on the shaft. Equation (3.5-85)

matches Equation (3.5-74). Equating Equations (3.5-84)and (3.5-85) and solving for  yields

(3.5-86)

The ATHENA turbine model approximates the shaft power as

(3.5-87)

where the efficiency, η, is defined as the ratio of the actual to the isentropic power

(3.5-88)

and the prime denotes an isentropic expansion.

Combining Equations (3.5-86)and (3.5-87) yields

(3.5-89)
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If one treats the density as constant, which is appropriate for relatively small changes in pressure, and
neglects the kinetic energy term, Equation (3.5-89) becomes

(3.5-90)

Since turbine efficiencies are typically near 0.8, a relatively small fraction of the shaft power is added to
the fluid. This heat source is analogous to the pump dissipation. Equation (3.5-84) shows that the change in
specific enthalpy depends on the pressure difference, which is determined by the momentum equation. For
consistency between the energy and momentum equations, the kinetic term in Equation (3.5-89) is
evaluated using the velocity squared terms used in the calculation of the momentum flux. Specifically,

(3.5-91)

where  is the volume average velocity and  is the donor velocity. The donor velocity is calculated as

(3.5-92)

where vj and Aj are the velocity and flow area of the upwind junction and   is the flow area of the

volume.

3.5.5.2  Efficiency Formulas. The basic efficiency formulas can be derived from velocity
diagrams with assumed nozzle and blade efficiency factors. The derivations are fairly straightforward and
are found in standard texts. The efficiency formulas recorded here were obtained from Reference 3.5-9.
The efficiency factors for four turbine designs are described in the following paragraphs.

3.5.5.2.1  Single-Stage Turbine--The first model considered is the most general. This is
called a Type 1 turbine in the input manual (Volume II, Appendix A). We consider a single-row
fixed-blade system followed by a single-row rotating-blade system. Let r be the reaction fraction, i.e., the
fraction of the stage energy released (enthalpy change) in the moving-blade system. If r is zero, we have a
pure impulse stage with no pressure drop in the moving-blade system, i.e., the moving blades only change
the fluid flow direction. A turbine stage with nonzero r at design conditions is commonly called a reaction
stage. A value of r = 0.5 is a common design.

If all blading angles are ideal and all nozzle losses are zero, the ideal efficiency, as given in

Reference 3.5-9, is

Q· m· P1 P2–
ρ

---------------- 
  1 η–( ) 1 η–

η
------------W·≈≈

v2 vv·=

v v·

v· vjAj

A
----------=

A
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(3.5-93)

where v is the fluid velocity at the nozzle exit, vt is the tangential or rim velocity of the moving blades, and

b  =  (1 - r)1/2 . (3.5-94)

In general, due to nozzle losses, entrance effects, and nonideal blading angles, the efficiency is less

than that given by Equation (3.5-93). The maximum efficiency (η = 1.0) given by Equation (3.5-93) can be
found by differentiation to occur when

. (3.5-95)

For an impulse stage, the maximum efficiency occurs at . For a reaction turbine designed

with r = 0.5, the maximum efficiency occurs at .

In general, the actual efficiency is less than the ideal value derived above. A first approximation to

the actual efficiency (see Reference 3.5-9) is to include a constant factor, ηo, in Equation (3.5-93) that

represents the actual efficiency at the maximum point, i.e.,

. (3.5-96)

Equation (3.5-96) is the general efficiency formula that is applied to a single-row impulse or reaction
turbine. This formula is applied to a stage group that may consist of a single-blade passage or
multiple-blade passages. If the stage group contains multiple-blade passages, the efficiency represents
some average value.

3.5.5.2.2  Two-Stage Impulse Turbine--The second turbine design considered is a
two-row impulse stage, i.e., a nozzle, a moving constant-area blade passage, a fixed constant-area
stationary passage, and a final constant-area moving blade passage. This is called a Type 0 turbine in the
input manual (Volume II, Appendix A). This blading system is modeled as a single-stage group. This type
of stage design is sometimes used as the first stage in a turbine for governing purposes. Reference 3.5-9
records the efficiency formula for this design as

η vb vt–( ) vb vt–( )2 rv2+[ ]
1 2⁄

+{ }
2vt
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. (3.5-97)

3.5.5.2.3  Constant Efficiency--The third efficiency option that is included is a constant
efficiency independent of the reaction, nozzle fluid velocity, and rim speed, i.e.,

η  =  ηo . (3.5-98)

This is called a Type 2 turbine in the input manual (Volume II, Appendix A).

It should be noted that a turbine stage, designed to operate with a given reaction fraction r at design
conditions, will have a different reaction fraction for off-design conditions. The change in reaction fraction

with  can be calculated [Reference 3.5-9, p. 207, Equation (14)]. For reaction stages, the change is

small. In all cases, this change in r is neglected in the above efficiency formulas.

3.5.5.2.4  User Specified Efficiency--A user specified efficiency turbine allows the user to
specify turbine efficiency as a function of normalized speed and load (shaft power or rate of work done by
the fluid on the shaft). This is called a Type 3 turbine in the input manual (Volume II, Appendix A). The
efficiency is calculated as 

(3.5-99)

where ω is the turbine speed and , , , a0, a1, a2, a3, b0, b1, b2, and b3 are input data. The

efficiency is limited between -100. and 1.0. The negative minimum efficiency allows for the possibility
that the shaft does work on the fluid, which can occur if the fluid velocity is less than the tangential
velocity. The negative efficiency was limited becasue code execution failures encountered during initial
testing of the Type 0 turbine. As shown by Equation (3.5-97), the efficiency approaches negative infinity
as the fluid velocity approaches zero. The large negative efficiency value caused the code to fail in test
cases in which the initial fluid velocity was zero.

3.5.5.2.5  Power/Torque Output of Turbine--In general, the relationship between power
and torque for a rotating shaft is

 = τω, (3.5-100)

where  is the power, τ is the torque, and ω is the shaft rotational velocity.
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The power extracted from the fluid per mass flow rate for a given stage group is

(3.5-101)

so we have for the torque

(3.5-102)

or

(3.5−103)

where R is the mean stage radius at the nozzle and the approximation in Equation (3.5-78) has been used.

Equation (3.5-103) gives the torque that is extracted from a given stage group in terms of the stage
efficiency, mean stage radius R, mean blade tangential velocity vt, and pressure drop. This is the torque

that is applied by the turbine component when it is coupled to the shaft component.

3.5.5.2.6  Inertia and Friction-- Turbine torque is used to calculate the turbine speed (ω) after the
turbine is disconnected from the shaft. The speed is calculated by the deceleration equation

(3.5-104)

The finite difference approximation to this equation is

(3.5-105)

where

= net torque

I = moment of inertia

t = time

η hd
S= const

∫

τ ρvA( )η
ρ
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P2 P1–( )
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----=

Idω
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------- τ=

ωt ∆ t+ ωt
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I
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∆t = time step

ω = angular velocity (turbine speed)

The total turbine torque is calculated by

(3.5-106)

where

= shaft power from Equation (3.5-87)

= frictional torque.

If the turbine stage is connected to the shaft, the torque for the stage group is obtained from the right
hand side of Equation (3.5-106) and the turbine stage inertia is included in the total inertia of all the
components connected to the shaft.

The frictional torque is in the form of a five-term equation that depends on the speed ratio as
described in the input manual (Volume II, Appendix A). The value of the frictional torque is also
dependent on the sign of the turbine speed.

The turbine moment of inertia is in the form of a constant or in the form of a cubic equation that
depends on the speed ratio as described in the input manual (Volume II, Appendix A).

3.5.5.2.7  Numerical Implementation--As noted in the model design section, a stage group
is modeled as a single-junction (j) and single-volume (L) (see Figure 3.5-16).

Figure 3.5-16 Schematic of lumped model for turbine stage group.

τ W·
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The continuity equation in Section 3.1 is unchanged from its standard form. The normal finite
difference form of the momentum equations for junction j is modified in two ways:

1. The pressure gradient term in the sum and difference numerical equations is multiplied by
(1 - η).

2. The numerical differencing of the convective terms has been modified. At a normal
junction, the convective terms are approximated as

. (3.5-107)

The small viscous term VIS is numerically calculated so as to give a donored formulation of the
momentum flux term in a straight pipe. For a variable-area channel, it is formulated so that it vanishes for
a variable-area channel with a constant density fluid. In a turbine, the area is slowly varying; but the fluid
experiences large pressure changes (due to the work extraction), hence large density changes. A numerical
simulation with the above convective terms used at the turbine junctions resulted in a viscous term that is
larger than the kinetic energy terms. Because the normal viscous terms for a variable area channel are
inaccurate in the turbine situation with large density changes and dominate the physical kinetic energy
change, the momentum flux terms for a turbine junction are neglected and set to zero. 

The normal finite difference form of the internal energy equation is modified by adding the
dissipation heat source term from Equation (3.5-89).

The algebraic efficiency formulas in Equations (3.5-96) through (3.5-99) are coded with v, ηo, r, ω,

and R (where vt = Rω) as arguments. The type of the turbine stage group is fixed at input time.

The stage torque that is applied to the shaft is calculated from Equation (3.5-103). The torques from
each stage group are added using the SHAFT component that integrates the angular momentum equation.
The power is calculated from Equation (3.5-100). This variable is not needed in the integration scheme but
is printed in the major edits.

3.5.6  Valves

Valves are quasi-steady models that are used either to specify an option in a system model or to
simulate control mechanisms in a hydrodynamic system. The valve models can be classified into two
categories: valves that open or close instantly and valves that open or close gradually. Either type can be
operated by control systems or by flow dynamics.

v∂v
∂x
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2
---vL
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Valves in the first category are trip valves and check valves. The model for these valves does not
include valve inertia or momentum effects. If the valve is used as a junction with an abrupt area change,
then the abrupt area change model is used to calculate kinetic loss factors when the valve is open.

Valves in the second category are the inertial swing check valve, the motor valve, the servo valve,
and the relief valve. The inertial valve and relief valve behavior is modeled using Newton’s second law of
motion. The abrupt area change model controls losses through these valves as the cross-sectional flow area
varies with valve assembly movement. The motor and servo valve use differential equations to control
valve movement. These two valves include the options to use the abrupt area change model to calculate
losses across the valve or to use flow coefficients (Cv) specified by the user. The Cv’s are converted to

energy loss coefficients within the numerical scheme [see Equation (3.5-121)].

Valves are modeled as junction components. The types of valves are defined as follows.

3.5.6.1  Trip Valve. The operation of a trip valve is solely dependent on the trip selected. With an
appropriate trip, an abrupt full opening or full closing of the valve will occur. A latch option is also
included for latching the valve in the open or closed position.

3.5.6.2  Check Valve. The operation of a check valve can be specified to open or close by static
differential pressure, to open by static differential pressure and close by flow reversal, or to open by static
differential pressure and close by dynamic differential pressure.

All of the check valves will be opened based on static differential pressure across the junction
according to

 > 0, valve opens (3.5-108)

where

PK, PL = junction from and to volume thermodynamic pressures

= static pressure head due to gravity

PCV = back pressure required to close the valve (user input).

For a static pressure controlled check valve, the valve will open if Equation (3.5-108) becomes
positive and will close if Equation (3.5-108) becomes negative. If Equation (3.5-108) is zero, the valve will
remain as previously defined.

For a flow controlled check valve, the valve will open if Equation (3.5-108) is positive and will close
only if a flow reversal occurs such that

PK ∆PKg
–( ) PL ∆PLg

+( )– PCV–

PKg
 , PLg

∆∆
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FFF  < 0 (3.5-109)

where FFF is given as

. (3.5-110)

For a dynamic pressure controlled check valve, the valve opens if Equation (3.5-108) is greater than
zero. Once the valve is open, the forces due to pressure differential and momentum hold the valve open
until

 < 0, valve closes, (3.5-111)

                                                                   = 0, remains as previously defined

where GC = .

The terms αf and αg are the junction liquid and vapor volume fractions, respectively; ρf and ρg are

the junction liquid and vapor densities, respectively; and vf and vg are the junction liquid and vapor

velocities, respectively.

Flow and dynamic pressure controlled valves exhibit a hysteresis effect with respect to the forces
opening and closing the valve. The static pressure controlled valve, however, has no hysteresis effect.

All check valves may be initialized as either open or closed. Leakage is also allowed if the valve is
closed, and the abrupt area change model is used to calculate the valve form losses.

3.5.6.3  Inertial Valve. This valve models the motion of the valve flapper assembly in an
inertial-type check valve. The abrupt area change model is used to calculate kinetic form losses, assuming
that the area between the flapper and the valve seat behaves as an orifice whose area changes in time as a
function of the inertial valve geometry.

The motion of the flapper about the shaft axis is given by Newton’s second law (angular version) as

(3.5-112)

where

T = torque

FFF 1
2
--- ∆xK ∆xL+( ) αfρfvf αgρgvg+( )j=

PK ∆PKg
–( ) PL ∆PLg

+( )– GC PCV–+

1
2
--- αfρfvf vf αgρgvg vg+( )

j

ΣT Iω·=
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I = moment of inertia

= angular acceleration

ω = angular velocity = , counter-clockwise motion is positive

θ = disc angular position, θ = 0 is fully closed.

Torque is defined as r x F; the cross-product of a force F and the distance from the hinge pivot point,

r, to the force. Each particle of a rotating body has kinetic energy. Kinetic energy is defined as 0.5mV2

where m is the mass and V is the velocity. Since V = rω where r is the distance to the particle and ω is the

angular velocity, the kinetic energy of the particle is 0.5mr2ω2. The total kinetic energy of a rotating body
is the sum of the kinetic energy of all of its particles. Since the angular velocity of all particles is the same,

ω can be factored out to give:

. (3.5-113)

The term in parentheses is know as the moment of inertia, I.

A diagram of an inertial valve is shown in Figure 3.5-17. The valve flapper disc resides in a pipe and
swings on a hinge pin. The valve are used to prevent backflow. The flapper position depends on factors
such as flapper mass, gravity vector, moment of inertia, distance from the hinge pin to the center of mass,
flapper area, pressure difference across the valve, viscous and Coulomb friction between the flapper and
the pin, and lift and drag forces on the flapper. Only torque due to differential pressure, TDP, Coulomb

friction, TF, and weight, TW, are included in this model. These torques are given by

TDP  =  (PK - PL) APL (3.5-114)

TF  =  ∆PFARL (3.5-115)

TW  =  - MgLsinθ (3.5-116)

where

PK = pressure in the hydraulic cell on the left

PL = pressure in the hydraulic cell on the right

AP = projected area of the disc

ω·

θ·

Kinetic Energy 0.5 Σmiri
2( )ω2=
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L = user input flapper moment arm length from the hinge to the center of inertia

AR = area of disc = πRv
2

Rv = user input disc radius

∆PF = user input value of minimum pressure difference across the valve required to

initiate motion (cracking pressure)

g = acceleration due to gravity

M = mass of the flapper.

The differential pressure across the flapper faces decreases as the valve flapper swings into hydraulic

cell on the right. To approximate this decrease, the projected area is used in the TDP term (see Figure

3.5-18).The projected area of a circle is an ellipse with an area of πRvb. Since b = Rvsin(φ) where φ is

90-θ;

AP  =  πRv
2sin(90-θ)   =  πRv

2cos θ . (3.5-117)

Figure 3.5-17 Diagram of inertial valve.
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The angular acceleration is solved from Equation (3.5-112), resulting in

(3.5-118)

and the new time flapper velocity and angle are

. (3.5-119)

The new time angle is calculated from the angle at the previous time step and the average velocity
during the time step, which is

θn  =  θn - 1 + 0.5(ωn - 1 + ωn) ∆t (3.5-120)

where superscript n stands for new time and n-1 indicates the previous time step value.

In order to obtain the correct velocity to compare with the sonic speed at the valve the vena-contracta
is considered. The effective flow area is Cc times the actual open area, where Cc is the contraction

coefficient (i.e., effective area/actual open area).

Table 3.5-4 gives the table of contraction coefficients.3.5-10 Cc is less than one and has the effect of

increasing the code calculated velocity in the valve opening. The table also shows the loss coefficient
Kloss,  which the abrupt area change model automatically calculates for the code users. Volume IV

discusses this in more detail.

. 

Figure 3.5-18 Two views of a partially open flapper valve.
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Several options are allowed with the use of this valve, such as specifying minimum and maximum
flapper angular positions when the valve is closed, specifying latch or no latch options, and specifying
leakage area.

3.5.6.4  Motor Valve. This valve model has the capability of controlling the junction flow area
between two control volumes as a function of time. The operation of the valve is controlled by two trips;
one for opening the valve and a second for closing the valve. A constant rate parameter controls the speed
at which the normalized valve area changes. The motor valve area variation can also be specified using a
general table. When the general table is specified, the constant rate parameter controls the normalized
valve stem position, and the general table relates the normalized stem position to the normalized valve
flow area. Conversely, when the general table is not specified, the constant rate parameter controls the rate

of change in the normalized valve area. If the normalized valve flow area has a value less than 1.0 x 10-10,
the valve is assumed to be closed.

The first option for the motor valve is to use the abrupt area change model to calculate kinetic form
losses with respect to the valve area. 

A second option allowed for the motor valve is the specification of valve flow coefficients, Cv, using

the smooth area change model. These coefficients may be specified using a general table of Cv versus

normalized stem position and the smooth junction option must be specified. The conversion of Cv to an

energy loss coefficient, K, is done in the numerical scheme using the formula

(3.5-121)

where ρo is the density of liquid light water at 60.0 °F (288.71 K), 14.7 lbf/in
2 (1.0x105 Pa). The value of

the density ρo is 62.4 lbm/ft3 (999.09 kg/m3). The value of C is . Provisions also

Table 3.5-4 Contraction coefficient table.

Area 
fraction

open

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cc 0.617 0.624 0.632 0.643 0.659 0.681 0.712 0.755 0.813 0.892 1.0

KLoss 0.38 0.36 0.34 0.31 0.27 0.22 0.16 0.10 0.05 0.02 0.0

K 2CAvalve
2

Cv
2ρo

--------------=

9.3409x108

gal
min
---------- 

  2
lbm

ft7 lbf

in2
-------

--------------------------
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exist for applying multipliers to both normalized stem position and Cv. The Cv term is entered in British

units only.

3.5.6.5  Servo Valve. The servo valve operation is similar to that for the motor valve. However,
the normalized valve area or normalized stem position is controlled by a control variable rather than by a
specified rate parameter. The servo valve also has the same options as the motor valve.

3.5.6.6  Relief Valve. For thermal-hydraulic analysis of overpressure transients, it is necessary to
simulate the effects of relief valves. In particular, it is desirable to model the valve dynamic behavior,
including simulation of valve flutter and hysteresis effects.

To assist in understanding the relief valve model, three schematics of a typical relief valve are shown

in Figure 3.5-19, Figure 3.5-20, and Figure 3.5-21. The three schematics represent the valve in the closed

(Figure 3.5-19), partially open (Figure 3.5-20), and fully open (Figure 3.5-21) modes, respectively. In the
schematics, the seven main components of a relief valve are shown, which are the valve housing, inlet,
outlet, piston, rod assembly, spring, bellows, and valve adjusting ring assembly. 

The numerical model of the valve simply approximates the fluid forces acting on the valve piston and
the valve reaction to these forces. The model of the fluid forces is based on a quasi-steady-state form of the
impulse momentum principle, and the valve reaction force is based on Newton’s Second Law of motion.

A qualitative understanding of the operation of the relief valve can be gained by referring again to

Figure 3.5-19, Figure 3.5-20, and Figure 3.5-21. If the valve inlet pressure is low the valve is closed, as

shown in Figure 3.5-19. As the inlet pressure increases, the valve piston will remain closed until the force
of the upstream pressure on the valve exceeds the set point forces. The set point forces are the combined
forces of the piston and rod assembly weight, the valve spring, the atmospheric pressure inside the bellows,
and the downstream back pressure around the outside of the bellows. Once the set point forces are
exceeded, the valve piston will begin to lift. Upon opening, the upstream fluid will begin to expand

through the opening into the valve ring region. This initial expansion occurs through the angle αo, and the

flow changes direction through an average angle θo, as shown in Figure 3.5-19. As the flow accelerates,

the momentum effects of the expansion and change in flow direction exert a thrust on the valve piston,

causing the valve to open further. As the valve partially opens, the angle of expansion decreases to α1 and

the change in flow direction increases to θ1, as shown in Figure 3.5-20. This effect, in turn, further

increases the thrust on the valve piston, causing it to fully open, as shown in Figure 3.5-21. As these
processes occur, the valve reaction forces and fluid momentum forces vary in such a manner that the valve
will not close until the upstream pressure decreases significantly below the valve set point pressure. In this
respect, a hysteresis effect is observed that is characteristic of relief valves.

The relief valve model consists of a set of equations designed to approximate the behavior described
above. In implementing the model, the dynamic behavior of the fluid is calculated at each time step by the
ATHENA hydrodynamic solution scheme. The resultant phasic velocities and thermodynamic properties
are then used to solve a quasi-steady equation approximating the fluid forces on the valve piston. The valve
3-295 INEEL-EXT-98-00834-V1



ATHENA/2.3
dynamic reaction forces are then calculated, and the new time valve piston speed and position are
estimated.

The relief valve model is formulated, applying D’Alembert’s principle in which the forces acting on
the face of the valve piston are balanced, for which the valve reaction forces can be written as

(reaction forces)  =  FR  =  mvav,x + B (vv,x - vhousing) + Ksx (3.5-122)

where

mv = mass of the valve mechanism that is in motion (i.e., the valve piston, rod

assembly combined with the spring and bellows)

av,x = valve assembly acceleration in the x-direction

Figure 3.5-19 Schematic of a typical relief valve in the closed position.
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B = damping coefficient

vv,x = velocity of the valve mechanism in the x-direction

vhousing = velocity of the valve housing = 0

Ks = spring constant

x = piston position (i.e., x-coordinate).

The positive x-direction is assumed to be in the direction of fluid flow at the valve inlet. The fluid
forces, FF, can be formulated by summing the forces acting over the surfaces of the fluid flow channel such

that

FF  =  (PiAD)x - (PaABa)x - (PoABo) - (PeAe)x - FR (3.5-123)

Figure 3.5-20 Schematic of a typical relief valve in the partially open position.
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where

FR = reaction forces

Pi = valve inlet pressure

AD = valve piston face area exposed to the inlet flow stream

Pa = atmospheric pressure inside the bellows

ABa = valve piston area inside the bellows

Po = valve back pressure outside the bellows

ABo = valve piston area outside the bellows

Ae = valve ring exit area

Figure 3.5-21 Schematic of a typical relief valve in the fully open position.
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Pe = valve ring exit pressure

and where the subscript x denotes that the force component is in the x-direction. 

The valve back pressure outside the bellows (Po) and valve ring exit pressure (Pe) are calculated from the

density change from the throat to the outlet and to the ring exit respectively. Since the homogeneous sound
speed (a) can be expressed by 

 , (3.5-124)

the density variation is related to the pressure variation as

 . (3.5-125)

Since the isentropic compressibility can be expressed by 

 , (3.5-126)

the pressure variation is related to the density variation as

 . (3.5-127)

The Bernoulli equation gives

 . (3.5-128)

The mass flux is expressed as

. (3.5-129)

Consequently,

 . (3.5-130)

a2

ρ∂
∂P

 
 

S
=

dP a2 dρ•=

κS
1
ρ
---

P∂
∂ρ

 
 

S
=

dρ κSρdP=

dP  ρ
2
---dv2–=

G ρv=

dG2 ρ2dv2 v2dρ2+=
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Algebraic manipulations result in

 . (3.5-131)

Thus, we obtain

 . (3.5-132)

From Equations (3.5-129) and (3.5-132), the variations of density from the throat to the outlet and to
the ring exit can be calculated as

(3.5-133)

and

(3.5-134)

where Go is the outlet mass flux, Ge is the ring exit mass flux, Gth is the throat mass flux, and vth is the

throat velocity. The pressures at the outlet and ring exit can be obtained as

(3.5-135)

and 

(3.5-136)

where the pressure at the throat (Pth) is obtained from the Bernoulli equation using the inlet pressure and

flow conditions. The isentropic compressibility (κs) is obtained from standard thermodynamic relations. 

dρ  κS

2
----- dG2 2v2ρdρ–( )–=

dρ  κS

1.0 κSρv2–
---------------------------- 

  dG2

2
---------–=

∆ρo  κS

1.0 κSGthvth–
---------------------------------- 

  Go
2 Gth

2–( )
2

-------------------------–=

∆ρe  κS

1.0 κSGthvth–
---------------------------------- 

  Ge
2 Gth

2–( )
2

-------------------------–=

Po Pth a2 κS

1.0 κSGthvth–
---------------------------------- 
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-------------------------–=

Pe Pth a2 κS
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  Ge
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2
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Since the fluid is flowing through a channel that both expands and changes direction, the fluid
undergoes a change in momentum expressed by the impulse momentum principle as

(3.5-137)

where

= mass flow rate of the fluid through the valve

ve,x = fluid velocity exiting through the rings

vi,x = fluid velocity entering the valve inlet.

Balancing the forces by combining Equations (3.5-121), (3.5-122), and (3.5-137) gives

. (3.5-138)

The valve acceleration can be expressed in terms of the valve velocity as

(3.5-139)

where g is the acceleration of gravity.

Combining Equations (3.5-138) and (3.5-139), treating the velocity damping term and spring force
position terms implicitly, and integrating over the time step gives

(3.5-140)

where n and n+1 represent the old and new time terms, respectively.

The position term, xn+1, can be written in terms of the valve velocity by considering that

. (3.5-141)

If Equation (3.5-141) is integrated over the time step, then

FF ∆ mv( ) m· F ve x, vi x,–( )= =

m· F

mvav x, Bvv x, Ksx+ + PaABa( )– PoABo( )– PeAe( ) θ m· f ve θ vi–cos( )– PiAD+cos–=

av x,
dvv x,

dt
------------ g+=

mv vv x,
n 1+ vv x,

n–( ) Bvv x,
n 1+ dt Ksx

n 1+ dt mvgdt+ + + Pi
nAD( ) PaABa( )– Po

nABO( )–[ ]=

 Pe
nAe( ) θe

n m· f
n vc

n θe
n vi

n–cos( )dt–cos–

vv x,
dx
dt
------=
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. (3.5-142)

If the valve set point pressure is equated to Ksxo, then combining Equations (3.5-140) and (3.5-142)

and both adding and subtracting the term Ksxo gives the numerical form of the relief valve model,

(3.5-143)

where the sign of the gravity term, g, is dependent on the valve orientation. For example, if the valve is
oriented upward (i.e., +x is upward), then the gravity term is expressed as g = -|g|.

In the numerical scheme, Equation (3.5-143) is solved for the new time valve piston velocity, vv
n+1,

in terms of the current time terms with superscript n. The terms required to model the valve geometry and
the valve damping, spring, and back pressure forces are input to the code as described in Volume II,
Appendix A, of this report.

The characteristic relief valve hysteresis effects are inherent in the formulation of Equation
(3.5-143). For example, if the valve is closed, then all velocity terms are zero and x = xo. Therefore,

acceleration of the valve piston in the positive x-direction cannot occur until the upstream force PiAD

exceeds the spring set point and valve weight. Once the valve opens and the fluid accelerates, the forces
due to the change in fluid momentum aid in holding the valve open. Therefore, the valve cannot close until
the combined fluid pressure and momentum terms decrease significantly below the set point forces. Hence,
the desired hysteresis is incorporated in the model.

3.5.7  Accumulator

An accumulator model is included that features mechanistic relationships for the hydrodynamics,
heat transfer from the tank wall and liquid surface, condensation in the vapor/gas dome, and vaporization
from the liquid surface to the vapor/gas dome. The geometry of the tank may be cylindrical or spherical.
The accumulator model also includes the surge line and an outlet check valve junction.

3.5.7.1  Hydrodynamic Model. An accumulator is modeled in ATHENA as a lumped-parameter
component. This model was chosen for two reasons; the spatial gradients in the accumulator tank are
expected to be small, and a simple ideal gas equation of state can be used.

The accumulator model and associated notations are shown in Figure 3.5-22 for the case of a

cylindrical tank, and Figure 3.5-23 for the case of a spherical tank. The basic model assumptions are: 

xn 1+ xn vv x,
n 1+ dt+=

mv vv x,
n 1+ vv x,

n–( ) B Ksdt+( )vv x,
n 1+ Ks xn xo–( ) mvg+ +[ ]dt+

Ksxodt– Pi
nAD( ) PaABa( )– Po

nABo( )– Pe
nAe( ) θe

n m· F
n ve

n θe
n vi

n–cos( )–cos–[ ]dt+=
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• Heat transfer from the accumulator walls and heat and mass transfer from the liquid are
modeled using natural convection correlations, assuming similarity between heat and
mass transfer from the liquid surface.

• The vapor/gas in the vapor/gas dome is modeled as a closed expanding system composed
of an ideal gas with constant specific heat. The vapor in the dome exists at a very low
partial pressure; hence, its effect on the nitrogen state is neglected. However, energy
transport to the vapor/gas dome as a result of vaporization/condensation is included.

• Because of the high heat capacity and large mass of liquid below the interface, the liquid is
modeled as an isothermal system.

• The model for liquid flow includes inertia, wall friction, form loss, and gravity effects.

Using these assumptions, the basic equations governing the thermal-hydraulics of the tank and
discharge line are as follows:

Figure 3.5-22 Typical cylindrical accumulator.
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The conservation of mass for the nitrogen dome is

Mn  =  constant  =  ρn VD (3.5-144)

where

Mn = nitrogen gas mass

ρn = nitrogen gas density

VD = vapor/gas dome volume.

The conservation of energy for the nitrogen gas in the dome is

Figure 3.5-23 Typical spherical accumulator.
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(3.5-145)

where

Un = nitrogen specific internal energy

P = vapor/gas dome pressure

= net heat transfer rate to the vapor/gas dome from all sources.

The conservation of energy for the tank wall is

(3.5-146)

where

Mwall = metal mass in the tank wall

Cv,wall = metal specific heat

Twall = mean metal temperature

= heat transfer rate to the wall.

The conservation of momentum,a for the accumulator tank and surge line is

(3.5−147)

where

A = flow channel cross-sectional area

L = discharge line flow channel length

a. Equation (3.5-147) is the combined tank and discharge line momentum equation. The wall drag coefficient, F,

is given as , where D = surge line diameter and λwf is the Darcy friction factor.

Mn
dUn

dt
--------- 

  P dVD

dt
---------- 

 – QD
·

+=

Q· D

MwallCv wall,
dTwall

dt
--------------  Q· wall–=

Q
·

wall

1
2
---ρfλwf

L
D
----A v

ρA Ldv
dt
------ 1

2
---v2+ 

  Fv+ A P Pexit–( ) A∆Pz+=
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v = velocity in discharge line

F = frictional loss coefficient

Pexit = pressure at exit of surge line

∆Pz = elevation pressure differential between discharge line entrance and liquid

surface.

The equations of state for the nitrogen gas in the dome are

PVD  =  MnRnTg (3.5-148)

Un  =  Mn Cv,n Tg . (3.5-149)

Using Equation (3.5-149), Equation (3.5-145), the nitrogen energy equation, can be rewritten as

. (3.5-150)

Differentiating Equation (3.5-148), eliminating the constant term MnRn, and substituting the result

into Equation (3.5-150) yields

. (3.5-151)

Equations (3.5-147), (3.5-150), and (3.5-151) comprise the system of three differential equations
used in the accumulator hydrodynamic model. They are used to numerically advance Tg, VD, and P in

time.

3.5.7.2  Heat Transfer to the Vapor/Gas Dome. In the accumulator, energy transport by
convective heat transfer to the vapor/gas dome from the walls and fluid surface is modeled using an
empirical Newton cooling law formulation

Qi = hi Ai (Ti - Tg) (3.5-152)

where

i = thermal transport surface

MnCv n,
dTg

dt
--------- PdVD

dt
----------– Q

·
D+=

P 1 Rn

Cv n,
---------+ 

  dVD

dt
---------- VD

dP
dt
------+

Rn

Cv n,
---------Q

·
D=
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hi = convective heat transfer coefficient (averaged)

Ai = surface area

Ti - Tg = surface to vapor/gas dome temperature difference.

It should be noted that heat and mass transfer in the accumulator discharge line are neglected.

Two turbulent natural convection heat transfer models are used and combined by superposition.
First, heat transfer with the cylindrical walls of the tank is considered, using a turbulent natural convection

correlation3.5-11 for heat transfer within a vertical cylinder with closed ends for which

(3.5-153)

and

A1  =  πDTKL (3.5-154)

where

h1 = vapor/gas dome to cylinder heat transfer coefficient

L = vapor/gas dome cylinder length

δ = vapor/gas dome characteristic diameter

kn = nitrogen gas thermal conductivity

DTK = tank diameter

Gr = vapor/gas dome Grashof number

Pr = vapor/gas dome Prandtl number.

Second, heat transfer from the disk-shaped ends of the cylinder is considered, where the top disk is
the metal top of the tank and the bottom disk is the liquid-vapor/gas interface. For this model, a turbulent

natural convection correlation3.5-11 is used for heat transfer between two horizontal disks separated
vertically where, for each disk,

h1 0.1 kD

1
2
---  DTK

--------------- GrPr( )
1
3
--- L

δ
--- 

 =
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(3.5-155)

and

. (3.5-156)

In the case of a spherical tank, Equation (3.5-153) is used with A1 replaced by the surface area of the

tank in contact with the vapor/gas, i.e.,

A1 = 2πLR (3.5-157)

where L is the height of the vapor/gas dome and R is the radius of the sphere. The characteristic diameter
of a spherical vapor/gas dome is defined as the ratio of volume to surface area. The correlation given by
Equation (3.5-155) is not used for a spherical tank, hence h2 is set equal to zero.

In the correlations given by Equations (3.5-153) and (3.5-155), the product of the Grashof and
Prandtl numbers represents the convective thermal circulation in the vapor/gas dome, where the Grashof
number represents the ratio of circulation potential to viscous stress and the Prandtl number represents the
ratio of viscous stress to thermal diffusion. Only the Grashof number is a function of the vapor/gas dome
dimensions and temperature difference for which

(3.5-158)

where

g = acceleration due to gravity

βn = nitrogen gas isobaric coefficient of thermal expansion

Ti - Tg = magnitude of the interface, vapor/gas dome difference

νn = nitrogen gas kinematic viscosity

δ = characteristic overall diameter of the vapor/gas dome.

If the Prandtl number is written in terms of the nitrogen gas thermal diffusivity, then

h2 0.15kn

L
----- GrPr( )

1
3
--- L

δ
--- 

 =

A2
πDTK

2

4
-------------=

Gr gβn Ti Tg– δ3

νn
2

----------------------------------=
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(3.5-159)

where

ρn = nitrogen gas density

αn = nitrogen gas thermal diffusivity.

The characteristic diameter is defined in terms of the typical volume-to-surface-area ratio as

(3.5-160)

where Ai is the combined vapor/gas dome cylinder, disk top, and bottom surface areas. In the case of a

spherical vapor/gas dome, As = A1 + Ai, where A1 is given by Equation (3.5-157) and Ai is the surface area

of liquid-vapor/gas interface, i.e.,

Ai  =  πL(2R - L) (3.5-161)

where L is the height of the vapor/gas dome and R is the radius of the sphere.

3.5.7.3  Mass Transfer to the Vapor/Gas Dome. When the accumulator is in its stagnant initial
condition, the vapor/gas dome and liquid are in thermal equilibrium and the vapor/gas dome is saturated
with vapor. However, as the accumulator blows down, the vapor/gas dome temperature decreases due to
expansion, while the liquid remains essentially isothermal. As a result, there is simultaneous vaporization
at the liquid-vapor/gas interface and condensation in the vapor/gas dome. This mechanism transports a
large amount of energy to the vapor/gas dome as a result of the heat of vaporization of the liquid.

At the liquid-vapor/gas interface, as vaporization occurs, the relatively warm vapor rapidly diffuses
due to buoyancy into the vapor/gas dome. Assuming that the process can be approximated by a
quasi-steady formulation, then for diffusion in a stagnant vapor/gas, the mass transfer for the process can
be written as

(3.5-162)

where

= rate of vapor diffusion

Pr µn

ρnαn
-----------=

δ
4VD

Ai
----------=

M·
vap  ζAi

dC
dx
-------–=

M·
vap
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ζ = diffusion coefficient

Ai = surface area of the liquid-vapor/gas interface

= vapor concentration gradient.

The concentration can be expressed in terms of partial pressure such that

(3.5-163)

where

C = vapor concentration

Ps = local vapor partial pressure

ρs = vapor density (saturated vapor at Ps).

Hence, at the dome pressure, the concentration gradient can be written as

. (3.5-164)

Combining Equations (3.5-162) and (3.5-164) and integrating gives

(3.5-165)

where the integration is performed by parts.

Both of the differential terms dρs and dPs can be written in terms of temperature differentials if 100%

relative humidity is assumed so that

Ps  =  Ps (Tg) (3.5-166)

where Ps(Tg) is the saturation pressure at the temperature Tg. Hence, the density differential can be

expanded as

dC
dx
-------

C Ps

P
-----ρs=

dC
dx
------- 1

P
---

d Psρs( )
dx

------------------=

M·
vapLD  ζAi

P
-------- Ps ρs ρ Psd

x 0=

x LD=

∫+d
x 0=

x LD=

∫ 
 
 

–=
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(3.5-167)

where

= κsρs (3.5-168)

= - βsρs. (3.5-169)

Combining Equations (3.5-167), (3.5-168), and (3.5-169) and substituting Clapeyron’s equation for

the  term gives

(3.5-170)

where Clapeyron’s equation is

(3.5-171)

and the term  is treated as a constant. Combining Equations (3.5-166), (3.5-170), and (3.5-171),

the diffusion equation can be rewritten as

(3.5-172)

where the dome average terms are evaluated at the dome average temperature, Tg.

Equation (3.5-172) can be made analogous to a convective equation by expressing the mass transfer
coefficient as

(3.5-173)

dρs
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-------------- 
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where h2s is the mass transfer coefficient in a stagnant vapor/gas. Then, by applying Reynolds analogy, a

turbulent natural convection mass transfer coefficient can be derived in terms of the heat transfer
coefficient, h2, from Equation (3.5-155) such that

(3.5-174)

where αD is the thermal diffusivity in the vapor/gas dome.

Equation (3.5-174) can then be substituted in place of  in Equation (3.5-172) to give

(3.5-175)

which gives the rate at which water vapor is transported into the accumulator vapor/gas dome by turbulent
diffusion.

Since the energy transported to the vapor/gas dome by the vaporization process must come from the
liquid and since the energy per unit mass required for vaporization is hfg, then the rate of energy transport

to the vapor/gas dome by vaporization is

(3.5-176)

where  is the rate of vaporization at the liquid-vapor/gas interface.

In the vapor/gas dome, as the accumulator blows down, the vapor/gas temperature decreases and
condensation of vapor occurs. The rate of condensation may be approximated by assuming that the
vapor/gas dome remains at 100% humidity and by considering simple humidity relationships. The
humidity ratio can be written as

(3.5-177)

where

Ms, Mn = vapor, nitrogen gas masses, respectively
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INEEL-EXT-98-00834-V1 3-312



ATHENA/2.3
Ns, Nn = vapor, nitrogen gas molecular weights, respectively.

Taking the derivative of Equation (3.5-177) gives

. (3.5-178)

From equal Gibb’s free energy, the equilibrium relationship between the vapor and liquid condensate
in the dome is

(3.5-179)

and substituting the relationship

(3.5-180)

into Equation (3.5-179) and rearranging gives

. (3.5-181)

Combining Equations (3.5-178) and (3.5-177) with Equations (3.5-150) and (3.5-151) gives

(3.5-182)

and the rate of condensate formation is given as

. (3.5-183)

The energy transported by the condensate to the interface is expressed as
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. (3.5-184)

Also, since the condensation is taking place in the vapor/gas dome, the energy given up by the
condensation process is given up to the vapor/gas dome at the rate expressed as

. (3.5-185)

Finally, since it is assumed that the condensate is transported to the interface at the condensation rate,
i.e.,

 , (3.5-186)

the net energy given up to the vapor/gas dome by the condensation process can then be expressed as

. (3.5-187)

3.5.7.4  Energy Transported to the Vapor/Gas Dome by Combined Heat and Mass
Transfer. The total energy transported to the vapor/gas dome can be rewritten by combining Equations
(3.5-152), (3.5-153), (3.5-155), (3.5-176), and (3.5-187) and summing to give

. (3.5-188)

3.5.7.5  Numerical Implementation. The numerical scheme used for the accumulator model
includes special features for coupling the solution scheme to the main code in such a way that it is time
step independent. This scheme is semi-implicit, and special considerations are employed to preserve the
nitrogen energy and mass. Since a spherical accumulator has a variable cross-sectional area, the
momentum equation is generalized to the case of a variable flow area.

The numerical scheme uses finite-difference techniques to solve the differential equations. The
momentum equation is formulated by integrating Equation (3.5-147) over space and writing the time
variation in difference form as

Q
·

m· c m· chf
s Tg( )=

Q
·

M·
c M·

chfg Tg( )=

m· c M·
c=

Q
·

c Q
·

M·
c Q

·
m· c– m· c hfg Tg( ) hf

s Tg( )–[ ]= =

Q
·

D h1A1 h2A2+( ) Tw Tg–( ) h2A2 Tf Tg–( ) M
·

vaphg
s Tf( ) m· c hfg Tg( ) hf

s Tg( )–[ ]+ + +=
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(3.5-189)

where Pn+1 is the pressure downstream from the accumulator junction.

The inertia term is represented by

(3.5-190)

where , , , and  are the lengths of the liquid and vapor/gas in the discharge line and tank,

respectively, AL is the area of the discharge line, and Af and Ag are the mean flow areas in the tank and

discharge line of the liquid and vapor/gas, respectively. In the case of a spherical tank, Ag used in the

vapor/gas inertia term is obtained from the relation

(3.5-191)

and Af used in the liquid inertia term is obtained from the relation

(3.5-192)

where  and  are the vapor/gas and liquid volumes, respectively. The volume of vapor/gas in the

tank is

, (3.5-193)

and the available volume of liquid in the tank is

(3.5-194)
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3-315 INEEL-EXT-98-00834-V1



ATHENA/2.3
where Lmin is the minimum liquid level that is determined by the position of the discharge line which may

protrude into the tank. The inertia terms are computed at each time step and vary explicitly with time; as
the accumulator blows down, the inertia term changes from a liquid-dominant to a vapor/gas-dominant
term.

The liquid and vapor/gas friction terms, respectively, are formulated as 

(3.5-195)

for the liquid, and

(3.5-196)

for the vapor/gas, where the friction is calculated for the tank and the line. The line friction factor λ is
assumed to be the constant turbulent-turbulent Darcy friction factor given as

. (3.5-197)

The loss factor term, KL, is assumed to be distributed over the discharge line length, LL, and it is neglected

in the tank. If the surge line length is 0, the loss factor term is not used. The term D is the average tank and

surge line hydraulic diameter, and ε is the input wall roughness. 

The elevation head term, ∆Pz, is formulated as

(3.5-198)

where ∆zTK and ∆zL are the tank and surge line elevation changes, respectively, and g is the gravitational

acceleration. 

The liquid and vapor/gas momentum flux terms, CONVF and CONVG, respectively, are formulated
in linear implicit form as
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(3.5-199)

if there is liquid in the tank,

CONVF  =  0.0 (3.5-200)

where there is no liquid in the tank,

(3.5-201)

if there is vapor/gas in the discharge line, and, finally

CONVG  =  0.0 (3.5-202)

where there is no vapor/gas in the discharge line. In the case of a spherical tank, the value of ATK used in

CONVF is the flow area at the liquid-vapor/gas interface, and the value of ATK used in CONVG is the

mean flow area of the tank. In this formulation, the momentum equation is solved over the pressure
gradient from the centroid of the vapor/gas dome to the accumulator junction. However, the momentum of
the fluid downstream from the accumulator junction is not included. Flow begins when the pressure,
gravity, and friction forces result in positive flow out of the accumulator; and flow ceases when these
forces result in reverse flow. Also, since fluxing of the vapor/gas through the junction is not allowed, 

(3.5-203)

until the accumulator empties of liquid. The effect of this formulation is that as the accumulator blows
down, the liquid-vapor/gas interface moves out of the accumulator tank and surge line. Thus, the centroid
of the vapor/gas dome moves towards the centroid of the combined tank and surge line.

The pressure solution is obtained by combining Equations (3.5-145) and (3.5-149) and multiplying

by , which results in

(3.5-204)
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where  is given by Equation (3.5-188).

Since the liquid is incompressible, we obtain

; (3.5-205)

substitution into Equation (3.5-151) and expanding in nonconservative finite difference form gives

. (3.5-206)

The energy equation may then be solved directly for the new time vapor/gas temperature by
combining Equations (3.5-148), (3.5-151), and (3.5-206) and integrating, which gives

. (3.5-207)

The algorithm used to track the liquid level is based on the tank mass balance which is given by

. (3.5-208)

In the case of a spherical tank, ATK is given by

. (3.5-209)

Given , Equation (3.5-208) is solved by explicit numerical integration to obtain , which is

of the form

. (3.5-210)
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3.5.8  ECC Mixer

In order to calculate the process of mixing of a jet of cold water injected into a two-phase mixture
and the resulting vapor condensation that follows, as in the case of emergency core cooling (ECC)
injection in a PWR, a special component model, called ECCMIX, has been introduced into ATHENA.

3.5.8.1  ECCMIX Component. An ECC mixing component is a specialized branch that requires
three junctions with a certain numbering order. The physical extent of the ECCMIX component is a length
of the cold leg pipe centered around the position of the ECC injection location. The length of this segment
should be about three times the inside diameter of the cold leg pipe. Junction number one is the ECC
connection, junction number two is the cold leg cross-section through which flow enters this component in
normal reactor operation, and junction number three is the one that leads to the reactor vessel. A schematic
vertical cross-section of an ECCMIX component is shown in Figure 3.5-24. The geometrical description
of the ECCMIX component is very similar to that of the JETMIXER component except for the
specification of an angle for the ECC pipe connection. 

The momentum effects due to the mixing for the ECCMIX component are similar to the JETMIXER
component (see Section 3.5.3), except for the specification of the angle for the ECC connection. The
ECCMIX component ECC connection junction is treated similarly to the JETMIXER drive junction,
except that the cosine of the ECC connection junction angle is used. The ECCMIX normal flow inlet
junction is treated similarly to the JETMIXER suction junction, and the ECCMIX normal flow outlet
junction is treated similarly to the JETMIXER normal flow outlet junction.

The computational model for the ECCMIX component employs a particular flow regime map for
condensation and, for each flow pattern, uses a different correlation for interfacial heat transfer to calculate

Figure 3.5-24 ECCMIX component.

Lm

ECC injection lineD j

J1
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hif, as described in detail in the following subsections. The ECCMIX component calculations are evoked

only if there is subcooled ECC injection and if there is any vapor to be condensed in that component.
Otherwise, the ECCMIX component is treated as an ordinary BRANCH in the ATHENA calculations.

3.5.8.2  Flow Regimes in Condensation. Prior to the introduction of the ECCMIX component,

ATHENA included three flow regime maps, as described in the RELAP5/MOD2 manual3.5-12 and in the

RELAP5/MOD2 models and correlations report.3.5-13 None of those, however, would apply specifically to
the condensation process in a horizontal pipe near the emergency core coolant (ECC) injection point. A

flow regime map for condensation inside horizontal tubes is reported by Tandon et al.,3.5-14 and it was
considered a more suitable basis for the interfacial heat transfer calculation in condensation for this
geometry. A detailed description of the resultant ECC mixer volume flow regime map is found in Section
3.3.4 of this volume of the manual.

The variable names that are used in the coding for the coordinates of the condensation flow regime
map are

(3.5−211)

. (3.5-212)

These variables are also described in more detail in Section 3.3.4.

3.5.8.3  Vapor/Gas Mass Flux and Liquid Velocity in ECCMIX. Before describing the
calculational procedure for any of those patterns, it should be mentioned how the vapor/gas mass flux and
liquid velocity inside the ECCMIX component are calculated.

3.5.8.3.1  Vapor/Gas Mass Flux in ECCMIX--A volume-averaged vapor mass flux

(XflowG) must be determined before the variable  can be calculated. It is given by

(3.5-213)

where 

Wg2 = the total vapor/gas flow rate at junction 2

= αgj2ρgj2vgj2Aj2

voider 1 αg–
αg

--------------=

stargj vg
* XflowG

gDρg ρf ρg–( )[ ]1 2⁄
----------------------------------------------= =

vg
* 

XflowG Wg2 Wg3+
2A
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Wg3 = the total vapor/gas flow rate at junction 3

= αgj3ρgj3vgj3Aj3

A = cross-sectional area of the ECCMIX component.

3.5.8.3.2  Liquid Velocity in ECCMIX--The liquid velocity that is used for determining the
Reynolds number inside the ECCMIX component is calculated on the basis of the smallest of the absolute
values of the axial liquid velocity at either end of the ECC mixer and the additional contribution of the
liquid jet from the ECC connection line. The impact of the incoming ECC liquid jet is a function of the jet
velocity vjet and the difference between the pressure in the hydraulic cell upstream of the injection port and

the pressure in the ECCMIX component, ∆Pjet. The equations are

(3.5−214)

and

(3.5-215)

where

vfim = min (|vfj2|, |vfj3|).

vfres is the resultant liquid velocity that is used to determine the liquid Reynolds number in heat

transfer and interfacial friction calculations.

3.5.8.4  Interfacial Heat Transfer Rates. The two-fluid model in ATHENA requires
formulation of heat exchange between either phase and the interface. These are expressed as

Qik = Hik (Ts - Tk) (3.5-216)

where

k = f or g for liquid and vapor/gas, respectively 

Hik = volumetric interfacial heat transfer coefficient for phase k

= hik • Ai

∆Ijet 2∆Pjet

ρfjet
------------=

vfres ∆Ijet vfim
2+( )

1
2
---

=
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hik = interfacial heat transfer coefficient for phase k

Ai = interfacial area per unit volume

Ts = saturation temperature

Tk =  bulk temperature of phase k.

As implied in Equation (3.5-216), the interface is assumed to be at saturation temperature,
corresponding to the vapor pressure. In condensation of saturated vapor, there is almost no temperature
difference between vapor and the interface, while there is a very high rate of heat transfer from the vapor to
the interface (through mass transfer). For this reason, the volumetric heat transfer coefficient between

vapor and the interface is set to a high constant value of 107 W/m3⋅K.

The limiting factor is the rate of heat transfer to liquid, Hif. According to Equation (3.5-216), Hif

varies with the heat transfer coefficient, hif, and the interfacial area per unit volume, Ai, both of which

depend on the two-phase flow pattern. The interfacial area, Ai, and the local heat transfer coefficient for

the interface-to-fluid, hif, are calculated with different equations for the six basic flow patterns that are

identified in Table 3.3-1.

3.5.8.4.1  Heat Transfer to Liquid in the Six Basic Flow Patterns--The basic modes of
heat transfer to liquid are designed as:

• Hifb1 for wavy flow.

• Hifb2 for plug flow.

• Hifb3 for slug flow.

• Hifb4 for bubbly flow.

• Hifb5 for annular/annular-mist flow.

• Hifb6 for dispersed droplet flow.

Heat Transfer in Wavy Flow

Interfacial Area

Wavy flow inside a horizontal tube is regarded as a kind of horizontally stratified flow for the
purpose of interfacial contact and exchanges between vapor/gas and liquid. With this assumption, the
interfacial (contact) area between the liquid and vapor/gas is calculated from the geometrical dimensions
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of the ECCMIX component, vapor/gas void fraction, and the diameter of the ECC injection pipe. Figure
3.5-25 and Figure 3.5-26 show schematic cross-sections of the flow topology inside the ECCMIX
component in two vertical planes.

The volume-average vapor/gas void fraction, αg, is used to determine the width of the liquid surface

that is a function of the half-angle, θ, facing the free surface. ATHENA uses a particular function, called

HTHETA, to calculate θ for a given volume fraction that is bound by θ. If the liquid level is above the pipe

center (αg < αf), then function HTHETA is called with αg as an argument and θ is calculated. However, if

Figure 3.5-25 Schematic cross-section of stratified flow along the ECCMIX component, showing the 
length of interface, Lm, and the jet length, Ljet.

Figure 3.5-26 Schematic vertical cross-section of the ECCMIX component, showing the width of liquid 
surface, Ls, and the tending half-angle, θ.
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αg > αf, then αf is used as an argument for calculating θ. For this reason, care is taken to calculate the

length of the liquid jet, Ljet, differently for these cases, as the cylindrical surface of the liquid jet is also a

part of the condensation surface. The jet surface area is given by

Ajet = π djet • Ljet (3.5-217)

where

Ljet =    if αg < αf (3.5-218)

Ljet =    if αg > αf . (3.5-219)

The interfacial contact area per unit volume, in this case, is the sum of the jet surface area and the
rectangular horizontal interface area minus the impinging area of the jet, all divided by the component
volume. It is given by

(3.5-220)

where

sjet = cross-sectional area of the liquid jet.

A minimum value for Ai1 that is used in the code is .

Heat Transfer Coefficient

The heat transfer coefficient for wavy flow is calculated according to an experimentally established

correlation by Lim, Bankoff, Tankin, and Yuen,3.5-15 based on their data from condensation in cocurrent
flow of vapor/gas and liquid in a horizontally stratified flow situation. The correlation that is taken from

Reference 3.5-15 is the one that is recommended for the case of rough liquid surface, namely

(3.5-221)

where

0.5D 1.0 θcos–( )
φsin

------------------------------

0.5D 1.0 θcos+( )
φsin

------------------------------

Ai1

Ajet LmD θsin sjet

θsin
-----------–+

AmLm
-------------------------------------------------------=

1 2⁄( )π djet•
Lm

Am Lm•
--------------------

Nu 0.0344 Re( )g
0.58 Re( )f

0.42 Pr( )f
0.33=
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Nu = Nusselt number

Re = Reynolds number

Pr = Prandtl number (see nomenclature).

Using this correlation for Nusselt number, the overall heat transfer coefficient from the interface to
liquid, per unit volume, in wavy flow is expressed as

. (3.5-222)

Heat Transfer in Plug Flow

Interfacial Area

According to the flow regime map (Figure 3.3-4), this flow pattern exists for vapor/gas void
fractions between 0.25 and 0.666. It is assumed that the interfacial area changes from completely stratified

at voider = 0.5 (αg = 0.666) to a complete circular cross-section of the ECCMIX component at voider = 3.0

(for αg = 0.25). Hence, the interface area is interpolated between these limits, using the following

parameter:

tv1 = 0.4 (voider - 0.5)   for 0.5 < voider < 3.0 . (3.5-223)

The interfacial area for the stratified flow condition is calculated according to Equation (3.5-220),
and the interpolated area for wavy flow is

. (3.5-224)

Heat Transfer Coefficient

Since plug flow is considered an extension of the wavy flow pattern with interrupting liquid plugs,
the same heat transfer coefficient that was used for wavy flow, Equation (3.5-221), has been used for plug
flow. Hence, the overall heat transfer coefficient from interface to liquid, per unit volume, in plug flow is

(3.5-225)

in which Nu is given by Equation (3.5-221).

Hifb1 Ai1Nu kfm

D
------- 

 =

A12 1.0 tv1–( )Ai1 tv1 1
Lm
------ 

 +=

Hifb2 Ai2Nu kfm

D
------- 

 =
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Heat Transfer in Slug Flow

Interfacial Area

Slug flow is assumed to always include some contribution of the bubbly flow pattern; hence, there is
a gradual changeover from slug flow to a pure bubbly flow. The degree of this transition depends on
vapor/gas void fraction. This approach is used for all volumes in ATHENA (see Volume IV). There is only
a slight modification in the application of this approach to the ECCMIX component, that is, the lower limit

of vapor/gas void fraction is set at αb = 0.20 and the upper end void fraction is set at αc = 0.666. These

changes had to be imposed according to the limits specified for slug flow in the modified flow regime map

for condensation, as shown in Figure 3.3-4.

The interfacial area of slug bubbles (these are called Taylor bubbles in Reference 3.5-13) per unit
volume is calculated as

(3.5-226)

where

αs = (3.5-227)

αbb = . (3.5-228)

The numerical value of αbb varies from 0.2 (= αb) when αg = αb to about 0.0002277 when αg = αc.

As a result, Ai3s varies from 0.0 at αg = 0.2 to about  for αg = αc.

The variable αbb is also used to calculate the contribution of the small bubbles to the interfacial area,

for both heat and shear transfer calculations. The calculation of bubble flow area, average bubble diameter

and hydraulic diameter, as a function of αg and αbb, are performed in a subroutine called FIDIS. This is a

part of ATHENA and is documented in Volume IV.

Heat Transfer Coefficient

For the slug part, the heat transfer coefficient is calculated for the Taylor bubbles moving through
liquid. The correlation that is explained in Volume IV, is

Ai3s 4.5αs

D
-----=

1 αg–( ) αbb–
1 αbb–

---------------------------------

αbexp 6.778
αc αb–
----------------- αg αb–( )–

 
 
 

4.5 1.0 αg–
Dc

------------------- 
 
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Nutb = 1.18942 (RetbPr)0.5 (3.5-229)

where

Retb = . (3.5-230)

The overall heat transfer coefficient from the interface to the liquid, per unit volume, in slug flow is

(3.5-231)

in which Hifb4 is the contribution of the heat transfer by small bubbles in slug flow, and is calculated by

consecutive calls to two of the existing subroutines in ATHENA, namely subroutines FIDIS and HIFBUB,
according to the procedure that is described in the following section.

Heat Transfer in Bubbly Flow

Interfacial Area

The interfacial area per unit volume for bubbly flow in the ECCMIX component is calculated in the
same manner that is done for all other components in ATHENA, as documented in Volume IV. The
interfacial area per unit volume for bubbles is

. (3.5-232)

The derivation of this equation and the assumptions used in its derivation are given in Volume IV of
this manual. Among other things, it is assumed that the average bubble diameter is 0.5 dmax and that dmax

is determined by using a critical Weber number of Wec = 10. Computation of Ai4 is done by using the

FIDIS subroutine in ATHENA.

Heat Transfer Coefficient

For the bubbly flow regime, the heat transfer coefficient between the interface and liquid is

calculated with a model based on the modified Unal bubble collapse model3.5-16,3.5-17 and the Lahey

model.3.5-18 This is the same model that is used in non-ECCMIX volumes.

The heat transfer coefficient between the interface and liquid, per unit volume, in bubbly flow that is
calculated in the HIFBUB subroutine is according to the following equation:

ρf min vg vf– 0.8m/s,( )[ ]• D
µf

-------------------------------------------------------------------------

Hifb3 Ai3sNutb
kfm

D
------- 

  Hifb4+=

Ai4
0.72αgρf vg vf–( )2

σ
--------------------------------------------=
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(3.5-233)

where

F5 = 0.075       for αbub > 0.25 (3.5-234)

F5 = 1.8φC exp(-45αbub) + 0.075        for αbub < 0.25 (3.5-235)

C = 65.0 - 5.69 x 10-5 (P - 1.0 x 105)        for P < 1.1272 x 106 Pa (3.5-236)

C =        for P > 1.1272 x 106 Pa (3.5-237)

φ = 1.0       for |vf| < 0.61 m/s (3.5-238)

φ = (1.639344 |vf|)
0.47       for |vf| > 0.61 m/s (3.5-239)

αbub = max(αg, 10-5). (3.5-240)

Heat Transfer in Annular/Annular-Mist Flow

Heat transfer between interface and liquid in the annular and annular-mist flow regimes is calculated

according to the procedures that are used in TRAC-BF1.3.5-19,3.5-21,3.5-21 According to this model, the
interfacial exchanges of heat and momentum at the interface have two components, one at the interface
between the vapor/gas core and the liquid film on the walls and another one at the interface between the
vapor/gas and the entrained liquid droplets. The contribution of the entrained droplets is minimal at the
start of the annular flow, but the entrained liquid fraction increases with increasing vapor/gas velocity and
it becomes 100% at the end of the annular flow, that is the start of dispersed droplet (mist) flow. Variations
of the entrainment fraction serve as an interpolation mechanism in the calculation of interfacial exchanges
between the annular and droplet flows.

Liquid Droplet Entrainment Fraction

The fraction of liquid flow entrained as droplets is calculated with the equation recommended by

Andersen et al.3.5-21,3.5-22 It is given by

Hifb4
F5αghfgρfρg

ρf ρg–
-----------------------------=

1
K s⋅
-----------

1
K s⋅
-----------

1
K s⋅
-----------

2.5x109

P1.418
------------------- 1

K s⋅
-----------
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(3.5-241)

in which

(3.5-242)

where

D* = (3.5-243)

= (3.5-244)

Rerel = . (3.5-245)

A vapor/gas void fraction for the vapor/gas droplet mixture of the core is calculated as

αdc  =  1.0 - (1.0 - αg) Ef (3.5-246)

and a vapor/gas void fraction corresponding to the liquid in the film alone is calculated as

αf  =  1.0 - (1.0 - αg) (1 - Ef) . (3.5-247)

With these definitions, the two components of interfacial area and heat transfer are calculated in the
following way:

Film Interfacial Area

The average film thickness is

δf  =  0.5 D(1.0 - αf)
0.5 . (3.5-248)

A minimum film thickness is calculated as3.5-21,3.5-22

Ef
Xe 0.03–

1.0 Xe 0.1+( )2+[ ]
0.5

--------------------------------------------------=

Xe 1.0 6– jg
* •

2.5D* 1.25Rerel
0.25=

D g ρf ρg–( )
σ

------------------------
1 2⁄

jg
* αgvg

σg ρf ρg–( )

ρg
2

----------------------------
ρg

ρf ρg–
---------------- 

  0.667 0.25
------------------------------------------------------------------------

αfρfvfD
µf

-------------------
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. (3.5-249)

The average film thickness is selected as

δfa  =  max (δf, δfmin) . (3.5-250)

A void fraction corresponding to δfmin is calculated as

. (3.5-251)

Since the inside diameter of the liquid film is related to the inside diameter of the channel, Dc,

through αf by the relationship Di = Dc(αf)
1/2, the interfacial area per unit volume for the liquid film is then

. (3.5-252)

If αmin < αg, then

. (3.5-253)

Droplet Interfacial Area

According to Reference 3.5-22, an average droplet diameter is calculated based on the total mass
flux, jmt, given by

jmt   =   |αg vg + (1-αg) vf| . (3.5-254)

The relative droplet velocity is

. (3.5-255)

However, if

δfmin
18µf

2σ

g2ρf
3

---------------
 
 
  0.2

=

αmin 1.0 2δfmin

D
--------------– 

 
2

=

Ai5f 4.0 αf( )1 2⁄

D
----------------=

Ai5f 4 αf( )1 2⁄

D
----------------

1.0 αf–
1.0 αmin–
------------------------=

vdrop 1.414 gσ ρf ρg–( )

ρg
2

----------------------------
0.25

=
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(3.5-256)

then

. (3.5-257)

These are based on Ishii’s work.3.5-23 The droplet velocity is used to calculate the average droplet
diameter, based on a critical Weber number of 2.7. The average droplet diameter is given by

. (3.5-258)

In order to avoid physically unrealistic values for Ddrop, it is compared to some limiting values and

adjusted if necessary. These are:

• If Ddrop < 2.0 x 10-4 m, then Ddrop = 2.0 x 10-4 m.

• If Ddrop > 0.25 Dc, then Ddrop = 0.25 Dc.

Another limit on Ddrop is that of no more than 106 droplets per cubic meter, which gives

. (3.5-259)

The adjusted droplet diameter is then used to calculate the droplet interfacial area per unit volume,
that is

. (3.5-260)

Film Interfacial Heat Transfer Coefficient

jmt 1.456 gσ ρf ρg–( )

ρg
2

----------------------------
0.25 µg

2

σρg
σ

g ρf ρg–( )
------------------------

--------------------------------------

1 12⁄–

>

vdrop
3σ
ρg
------

g2 ρf ρg–( )
2

µgρg
----------------------------

0.33

jmt
2–=

Ddrop
2.7σ

ρg max vdrop
2 jmt

2,( )•
-----------------------------------------------=

Ddrop  Ddropl≤ 6 1 αg–

106π 1+
--------------------- 

  0.333
=

Ai6 61.0 αdc–
Ddrop

---------------------=
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The heat transfer coefficient at the film interface is calculated according to Reference 3.5-21 with

the following equation that is based on Megahed’s work.3.5-24

(3.5-261)

in which  is the film mass flow rate and Reff is the Reynolds number based on that flow. These variables

and jax are given below:

(3.5-262)

(3.5-263)

. (3.5-264)

The inside film diameter, Dif, that is used in Equation (3.5-261) is considered to be more relevant to

the interface than D that has been used in TRAC-BF1 coding of this equation.

Droplet Interfacial Heat Transfer Coefficient

The heat transfer coefficient for interface to droplets based on the works of Andersen et al.3.5-25 is

. (3.5-265)

Hence, for annular-mist flow, including droplet entrainment, the overall rate of heat transfer to
liquid, per unit volume, is

Hifb5  =  Ai5fhiff + Ai6hid . (3.5-266)

Heat Transfer in Dispersed Droplet Flow

The interfacial area per unit volume and the heat transfer coefficient for droplets were described
above. The overall heat transfer rate to liquid in this flow regime is

hiff
0.0771Cpfm· f

πDif jaxReff( )2 3⁄
--------------------------------------

gρf
2

µf
2

--------
 
 
  1 3⁄

=

m· f

m· f 1 Ef–( ) 1 αg–( )ρfvfAm=

jax
Cpf Ts Tf–( )

hfg
-----------------------------

ρf

ρg
----- 

  1 2⁄
=

Reff
4m· f

µfπD
-------------=

hid 1.8π2 kf

Ddrop
------------=
INEEL-EXT-98-00834-V1 3-332



ATHENA/2.3
Hifb6  =  Ai6hid (3.5-267)

where Ai6 and hid are given by Equations (3.5-260) and (3.5-265), respectively.

3.5.8.4.2  Heat Transfer to Liquid in Transition Zones--As shown in Table 3.3-1, there
are five transition zones in the modified condensation flow regime map. The numerical values of the heat
transfer rates, Hif, in the adjacent zones of the basic mode may vary considerably, and a linear interpolation

over the boundary zones would not be adequate to produce a smooth transition. For this reason, an
exponential interpolation is employed, as detailed in the following.

For transition between wavy and annular-mist flows,

(3.5-268)

where

van = .

For transition between wavy and slug flows,

(3.5-269)

where

psw = . (3.5-270)

For transition between wavy, plug, and slug flows (double interpolation, first an interpolation is

made in terms of  and then another one in terms of ),

(3.5-271)

where

Hiftsp = (3.5-272)

p1 = (3.5-273)

Hift1 Hifb5
1 van–( )Hifb1

van=

9 8 vg
*              for 1 vg

* 1.125≤ ≤–

Hift2 Hifb3
psw Hifb1

1 psw–( )=

81 αg–
αg

-------------- 4             for 0.5 1 αg–
αg

-------------- 0.625≤ ≤–

vg
* 1 αg–

αg
--------------

Hift3 Hiftsp
p2 Hifb1

1 p2–( )=

Hifb2
1 p1–( )Hifb3

p1

400vg
* 4              for 0.01 vg

* 0.0125≤ ≤–
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p2 = . (3.5-274)

For transition between plug and slug flows,

(3.5-275)

where

pp = . (3.5-276)

Finally, for transition between bubbly and plug flows,

(3.5-277)

where

pb =  - 3.0             for 3.0 . (3.5-278)

Computation of the interfacial heat transfer according to these equations is done in the ECCMXV
subroutine, that is called within subroutine PHANTV, whenever the ECCMIX component is encountered
and specific logical tests indicate that there is some vapor/gas in this component and a flow of subcooled
liquid is entering through the ECC injection line. Otherwise, the ECCMIX component is treated just as a
regular BRANCH component in the ATHENA calculations.

3.5.8.5  Effect of Noncondensable Gases. It is known that the presence of noncondensable
gases, such as air or pure nitrogen, reduces the rate of condensation. An experimental study of the effect of
noncondensable gases at different partial pressures on the rate of condensation heat transfer is reported by

DeVuono and Christensen.3.5-26 According to their findings, the degradation in the condensation heat
transfer with concentration of noncondensible can be correlated with the following:

fr = (1.0 -  y)4.31             for 0 < y < 0.14 (3.5-279)

where

fr = reduction factor in condensation heat transfer

y = noncondensible concentration (noncondensible volume at prevailing pressure
and time divided by total volume).

81 αg–
αg

-------------- 4             for 0.5 1 αg–
αg

-------------- 0.625≤ ≤–

Hift4 Hifb2
1 pp–( )Hifb3

1 pp–( )=

400vg
* 4              for 0.01 vg

* 0.0125≤ ≤–

Hift5 Hifb4
pb Hifb2

1 pb–( )=

1 αg–
αg

--------------
1 αg–

αg
-------------- 4.0≤ ≤
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The reduction factor, fr, of Equation (3.5-279) is applied to Hif as calculated in the ECCMXV

subroutine. It should be noted that the actual plots of measured data reported in Reference 3.5-26 indicate
a much stronger sensitivity to noncondensible concentration as compared to what can be calculated with
their correlation.

3.5.8.6  Interfacial Friction. Calculation of the interfacial friction for different flow patterns in the
ECCMIX component is done with the same correlations that are used for similar flow patterns in all other
horizontal components in ATHENA. The only remarks to be made on the interfacial friction calculations
in the ECCMIX components are the following:

• Transition between different flow patterns is according to the modified condensation flow
regime map.

• Linear interpolation is used between the friction values of the basic pattern around each
interpolation zone, employing the same interpolation variables that were used for
interfacial heat transfer in those boundary zones.

• For plug flow, it is assumed that the two phases are locked into each other; hence, the
interfacial friction factor is set to 1.

Computation of the interfacial friction factors is performed in a separate subroutine called ECCMXJ,
whenever the ECCMIX component is encountered and specific logical tests indicate that there is some
vapor/gas in the ECCMIX component and that a flow of subcooled liquid is entering through the ECC
injection line. Otherwise, the ECCMIX component is treated just as a regular BRANCH in the ATHENA
calculations.

3.5.8.7  Wall Friction. The two-fluid model of ATHENA requires that each phase should have its
own fraction of the wall friction for momentum balance. The distribution of the total wall friction between
vapor/gas and liquid varies with flow regimes. Calculations of the fractions of wall friction for each phase
in different flow regimes are done according to the same procedures that are used in other components.
However, transition between different flow regimes is determined in the same way that is used for the
interfacial heat and momentum transfer calculations. The only differences that are introduced for wall
friction in the ECCMIX component are the following:

• In bubbly flow, 100% of the wall friction is assigned to the liquid phase and nothing to the
vapor/gas phase.

• In droplet flow, 100% of the wall friction is assigned to the vapor/gas phase and nothing to
the liquid phase.

• Linear interpolation is used for wall friction over the transition zones, employing the same
interpolation variables that were defined for the interfacial heat transfer.
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Computations of wall friction fractions for vapor/gas and liquid are performed in parallel with the Hif

calculations in the ECCMXV subroutine.

3.5.9  Annulus

For an annulus component in the annular-mist regime for both the junction and volume flow regimes,

the code assumes that all the liquid is in the film and that there are no drops. Thus, αff = αf and αfd = 0.

This was based on work by Schneider3.5-27 on ATHENA calculations for UPTF Test 6, who showed that
this was necessary in order to get downcomer penetration following a cold leg break. In addition, the

Bharanthan3.5-28 correlation used in RELAP5/MOD2 was replaced by a standard laminar correlation and

the modified Wallis3.5-29 correlation in the turbulent region for the interfacial drag when in the
annular-mist flow regime (for either an annulus or any other component). Schneider found this was also
necessary in order to get downcomer penetration in UPTF Test 6. This interphase drag approach for an
annulus component was also used in RELAP5/MOD1.

3.5.10  Pressurizer

For a pressurizer component, the surgeline connection junction number of the junction connecting
the bottom volume of the pressurizer to the surgeline volume is required input. As liquid drains out of the
bottom volume through this junction, the code will donor out just liquid (rather than two-phase as is done
with the pipe or annulus). For the pressurizer component, a pressurizer liquid level is calculated and is
available for the major edits and the minor edits/plots. In addition for the pressurizer, the user is allowed to
input a constant interfacial heat transfer coefficient for liquid in the vertically stratified flow regime and the
level tracking flow regime, a constant interfacial heat transfer coefficient for vapor/gas in the vertically
stratified flow regime and the level tracking flow regime, a multiplier on the film thickness in the
annular-mist flow regime,  a multiplier on the interfacial heat transfer coefficients for both liquid and
vapor/gas in the vertically stratified flow regime and the level tracking flow regime, the pressurizer spray
droplet diameter, the pressurizer spray junction identifier, and the pressurizer spray mixing coefficient.
These are discussed in more detail in the next sections.

When the bottom volume of the pressurizer (volume I) is in the vertically stratified flow regime or
the level tracking flow regime, a downwind donor-cell process is used for calculating the junction volume
fractions at the surge line junction if a criterion is met. The criterion used is

(3.5-280)

where  is the liquid volume fraction in the bottom pressurizer volume (volume I). For this situation, the

volume fractions at the surge line junction (junction j) are given by

(3.5-281)

αfI 0.05>

αfI

α· fj αfK=
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(3.5-282)

where volume K is downstream of volume I. For all other situations, the normal upwind donor cell process
is used for calculating the junction volume fractions at the surge line junction.

The pressurizer liquid level is calculated using the equation

(3.5-283)

where k1 is the number of volumes in the pressurizer with a liquid volume fraction less than or equal to

0.99 (i.e., αfk ≤ 0.99), k2 is the number of volumes in the pressurizer with a liquid volume fraction greater

than 0.99, αfk is the liquid volume fraction of pressurizer volume k, and dlk is the length of pressurizer

volume k.

There are several other models that are specific to the pressurizer component. The user may specify
the interfacial heat transfer coefficients to liquid and vapor/gas for the volume containing a stratified liquid
level (either a liquid level created by the vertical stratification model or by the two-phase level tracking
model). The user may also specify a general table or control variable whose output value is used as a
multiplier on both the liquid and vapor/gas interfacial heat transfer coefficients for the volume in the
pressurizer containing the stratified liquid level.  The user may specify a general table or control variable
whose output value multiplies the fraction of the available liquid in the annular-mist  flow regime that
resides in the liquid film. The user may specify the size of the droplets in the annular-mist and mist flow
regimes. Finally, the user may activate a spray induced, enhanced condensation model. All of these options
are provided so that the user may adjust the condensation rate between the liquid and vapor/gas phases in
the pressurizer. The first three options may be used to adjust the condensation on the stratified liquid
interface. The last two options may be used to adjust the condensation rate when the pressurizer spray is
activated. The film fraction is the annular-mist flow regime is normally computed from an entrainment
correlation. The correlation is appropriate for co-current or counter-current upflow in which the droplets
are produced by entrainment from the film. This correlation is not appropriate for situations where the
droplets are produced by spray nozzles. Because the production of droplets depends on the goemetry of the
spray nozzle, the user may input the size of the droplets for a particular geometric arrangement. The last
option provides for the enhancement of the condensation on the stratified liquid inferface due to the
impingement of spray droplets. Impingement of the spray droplets on the surface of the liquid pool causes
mixing of the upper layers of the pool. If the liquid in the pool is subcooled, this mixing lowers the
temperature at the interface causing enhanced condensation. The model postulates that the enhanced
condensation is function of the spray impingement rate and the subcooling in the pool.

The spray induced, enhanced pool condensation rate is given by

α· gj αgK=

level αfkdlk dlk
k 1=

k2

∑+
k 1=

k1

∑=
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(3.5-284)

where

= spray induced, enhanced pool condenation rate (kg/sec)

C = user input mixing coefficient (-)

= spray flow rate into liquid pool (kg/sec)

= saturated liquid specific enthalpy (J/kg)

= bulk liquid specific enthalpy in volume containing the liquid-vapor 
interface (J/kg)

= vapor specific enthalpy at pool surface (J/kg).

The spray flow rate into the liquid pool consists of the total flow rate of liquid into the pool minus the flow 
rate of liquid into the pool along the walls of the pressurizer due to wall condensation. This flow consists of 
the flow through the spray junction plus any condensate on the spray droplets as they fall through the vapor 
space before impinging on the pool surface. This flow rate is computed in ATHENA as the flow rate of 
liquid into the liquid pool through the junction above the pool minus the summation of the wall condensation 
rates on the heat structures attached to volumes in the vapor space above the volume containing the liquid 
pool. This flow rate is given by

(3.5-285)

where

= liquid flow rate in junction j (kg/sec)

j = index of volume containing liquid-vapor interface

= wall condensation rate in volume i (kg/sec),

N = total number of volumes in pressurizer component.

The spray induced, enhanced pool condensation rate is only computed if there is flow into the
pressurizer through the spray junction. 

m· c sp, C m· s
hf

s hf–

hg hf
s–

---------------
 
 
 

=

m· c sp,

m· s

hf
s

hf

hg

m· s m· f j, Γw i,

i j=

N

∑–=

m· f j,

Γw i,
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3.5.11  Feedwater Heater

For a feedwater heater (FWHTR) component (Figure 3.5-27), a variation on the branch component
is used to represent the shell and one or more pipes represent a tube bundle within the shell. Feedwater
heaters transfer heat from the shell to the tubes primarily by condensing steam on the outside of the tubes. 

It is required that the shell and pipes be defined as horizontal, that the number of junctions connected
to the shell be two or three (one for vapor inlet, one for a condensatate output and an optional third junction
for condensate inlet), and that the stratification entrainment/pullthrough option should be specified for all
junctions connected to the feedwater heater shell. Optional data may be entered vis a table that relates the
water level in the shell to the shell void fraction. Data for the right side (i.e., outside surface) of the heat
slabs representing the tube walls in a FWHTR includes a specification of the top and bottom elevation of
the tube bundle relative to the bottom of the shell.

When the flow regime in the FWHTR is horizontally stratified, heat transfer from the shell side to the
tubes (right side of heat slabs) is computed using a condensation heat transfer correlation for the portion of
the tubes exposed to steam and a convection correlation for the portion of the tubes exposed to liquid.

3.5.12  Compressor

 The compressor model is similar to the existing pump model in ATHENA.  It performs the same
function on a gas as the pump performs on single-phase and two-phase fluids.  It is anticipated that the
compressor will usually be driven by a turbine on the same shaft, although the other capabilities presently
available in the pump, i.e. the speed table, the motor torque table, and the coastdown feature are also

. 

Figure 3.5-27 Schematic of feedwater heater component

Feedwater 
In 

Feedwater 
Out 

Turbine steam in 

Condensate out 
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available in the compressor.  The compressor head curve is specified differently than that of the pump
homologous curves, and the compressor torque is calculated based on the characteristic curves and the
stage efficiency.  The compressor consists of an inlet junction and a control volume, and optionally, an
outlet junction.  The outlet connection can also be an ordinary junction or another compressor component.

3.5.12.1  Compressor Model Description. In a compressor, a change in angular momentum of
the working fluid is caused by forces acting in the tangential direction only.  Radial and axial forces are
constrained by the physical design.  Therefore, the total torque applied to a compressor can be thought of
as being composed of two parts, one which changes the angular momentum of the fluid, and the other
which results in reactive forces in the journal and thrust bearings.  In principle, then, the isentropic torque
can be calculated by considering an isentropic compression of the fluid and then applying an efficiency
factor to get the total torque.

The compressor model begins with the conservation of angular momentum for the compressor rotor.
A mass of fluid enters with an initial azimuthal velocity vθ1 at a radius r1 and exits with azimuthal velocity

vθ2 at a radius r2.  The torque, τ, required for this angular acceleration is3.5-30 :

(3.5-286)

The rate of energy transfer (N-m/sec or ft-lbf/sec) is the product of the torque and the angular velocity (ω)

(3.5-287)

We can also write the steady state, steady-flow energy equation for the control volume that contains the

compressor rotor3.5-31 :

(3.5-288)

The stagnation, or total, specific enthalpy is defined as

Assume that the azimuthal angular acceleration associated with the torque in Equation (3.5-286) is
isentropic and neglect changes in potential energy.  Combining Equations (3.5-287) and (3.5-288),

(3.5-289)

τ m· r1 vθ1 r2 vθ2⋅–⋅( )=

τ ω⋅ m· r1 ω vθ1 r2 ω vθ2⋅ ⋅–⋅ ⋅( )=

Q· c.v. m· h1
v1

2

2
----- z1g+ + 

 + m· h2
v2

2

2
----- z2g+ + 

  W·
c.v.+=

hT h v2

2
-----+=

W·
c.v. τS ω⋅ m· h1

T h2'
T–( )= =
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where s denotes that the process is isentropic, and   refers to the isentropic specific enthalpy at State 2.

Equation (3.5-289) represents the isentropic work performed on the fluid by accelerating the fluid in the
tangential direction.  State 1, at the inlet of the compressor, is given by the upstream conditions.  The
specific entropy can be found as a function of total specific enthalpy and density,

 .

The total pressure at State 2 is determined from the tables of pressure ratio versus rotational velocity
and flow rate.  Pressure ratio is defined as

(3.5-290)

Therefore,  is

(3.5-291)

Because the work between States 1 and 2 is isentropic, the conditions at State 2 are determined as
follows:

(3.5-292)

  and the torque corresponding to the isentropic work is 

(3.5-293)

Note the sign is reversed compared to Equation (3.5-289), which indicates that work is done on the fluid.
This is consistent with the sign convention within the ATHENA pump component.  The adiabatic
efficiency is defined as

(3.5-294)

from which we can obtain the actual state

h2'
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(3.5-295)

The irreversible, or dissipative, torque is

(3.5-296)

The compressor dissipation is the energy associated with the work due to friction,

 (3.5-297)

and is added to the energy equation in the same manner as the corresponding pump dissipation is added.
The above derivation assumes isentropic compression to obtain the conditions at State 2, and requires
entropy-based property table look-up calls, which are not presently in the code.  However, torque can be
calculated from the work input to the fluid without the isentropic condition if an assumption is made
regarding the conditions at State 2.  The momentum equation for the compressor can be written in the

form3.5-32 

(3.5-298)

where g is gravitational acceleration, and H is the head added to the fluid by the compressor.  Assuming a
mean density that is independent of pressure, 

 ,

Equation (3.5-298) can be integrated to give

(3.5-299)

  and can be written in terms of total pressure

(3.5-300)
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where the pressure ratio is obtained as shown by Equation (3.5-290).  The compressor head that is added to
the momentum equation is therefore

(3.5-301)

By assumption, the heat into the system is zero, so the total work input to the fluid is

(3.5-302)

again using the sign convention where work on the fluid is positive. The isentropic work is calculated from
the increase in potential energy in the control volume

(3.5-303)

The torque corresponding to the isentropic work is obtained by combining Equations (3.5-293), (3.5-301)
and (3.5-303):

(3.5-304)

and the irreversible, or dissipitave, torque is obtained by substituting Equation (3.5-295) into Equation
(3.5-296) and combining with Equations (3.5-301) and (3.5-303) 

(3.5-305)

The total torque is the sum of the isentropic torque and the dissipative torque

(3.5-306)

and can be input to the shaft rotational velocity equation.  As with the pump model, the user has the option
to input motor torque as a function of rotational velocity.

∆P ρ g H⋅ ⋅ P1
T Rp 1–( ) P2

TRp 1–
Rp

---------------= = =

W·
c.v. m· h2

T h1
T–( ) m· h2'

T h1
T–( ) m· h2

T h2'
T–( )+ W·

s W·
d+= = =

W·
s m· g H⋅ ⋅ m· ∆P

ρm
------------= =

τs
m·
ω
---- h2'

T h1
T–( ) m·

ω
----

P1
T Rp 1–( )

ρm
--------------------------= =

τd
m·
ω
----

1 ηad–
ηad

---------------- h2'
T h1

T–( ) m·
ω
----

1 ηad–
ηad

----------------
P1

T Rp 1–( )
ρm

--------------------------= =

τt τs τd+ m·
ω
---- 1

ηad
------- h2'

T h1
T–( ) m·

ω
----

P1
T Rp 1–( )
ρmηad

-------------------------- m·
ω
----

P2 P1–
ρmηad
---------------- 

 = = = =
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As with the pump model, a quasi-static model for compressor performance is imposed on the
ATHENA volume-junction flow path representation.  The compressor is a volume-oriented component,
and the head developed by the compressor is added to the junction that connects the suction of the
compressor volume to the system. The compressor model is interfaced with the two-fluid hydrodynamic
model by assuming the head developed by the compressor is similar to a body force. Thus, the head term
appears in the mixture momentum equation; but, like the gravity body force, it does not appear in the
difference momentum equation used in ATHENA.  The head term is added to both the liquid and vapor
phase terms of the mixture momentum equation although it is recognized that the compressor will only be
operated in a system containing single-phase vapor.  The term that is added to the mixture momentum

equation is ρmgH, where H is the total head rise of the compressor (m), ρm is the volume fluid density

(kg/m3), and g is the acceleration due to gravity (m/s2). 

The compressor model has been implemented only in the semi-implicit numerical scheme.  The
compressor head is coupled implicitly to the velocities through its dependence on the volumetric flow rate,
Q. The volumetric flow rate is defined as the volume mass flow rate divided by the volume density. It is
assumed that the head depends on the volumetric flow rate, and can be approximated by a two-term Taylor
series expansion given by

(3.5-307)

Thus, the numerical equivalent of the term ρgH is

 . (3.5-308)

This term is added to the right side of the mixture momentum Equation (3.1-103). The junction
velocity is made implicit.

The compressor energy dissipation,  , is calculated for the compressor volume in a manner similar

to that derived for the turbine.  Neglecting the kinetic energy term because stagnation pressures are given
in Equation (3.5-290), Equation (3.5-86) becomes

(3.5-309)

Computing the rate of work from Equation (3.5-305) and accounting for the different sign convention
yields

Hn 1+ Hn dH
dQ
------- 

  n
Qn 1+ Qn–( )+=

ρngHn∆t ρng dH
dQ
------- 

  n
Qn 1+ Qn–( )∆t+

Q·

Q· m· P1 P2–
ρ1

---------------- 
  W·–=
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(3.5-310)

If the fluid is assumed to be incompressible, the density is constant and the compressor dissipation is
consistent with that obtained for the pump in Equation (3.5-62).

The energy dissipation term is evaluated explicitly in the semi-implicit scheme, and it is partitioned
between the liquid and vapor thermal energy equations in such a way that the rise in temperature due to
dissipation is equal in each phase. (The details of the dissipation mechanism in a two-phase system are
unknown, so the assumption is made that the mechanism acts in such a way that thermal equilibrium
between the phases is maintained without phase change.) Thus, the terms that are added to the right sides
of the liquid and vapor/gas thermal energy equations, Equations (3.1-91) and (3.1-92), for the compressor
volumes are

(3.5-311)

and

(3.5-312)

The compressor head H is defined by Equation (3.5-301), and torque by Equation (3.5-306).  Values are
obtained by means of an empirical compressor performance map, input to the code with the independent
variables based on mass flow rate and speed and the dependent variables of pressure ratio and efficiency.

The mass flow rate and speed tables should be entered as relative corrected values.  The general

forms of independent dimensionless parameters are3.5-33

(3.5-313)

for the corrected mass flow and

(3.5-314)

Q· m· P2 P1–( )
ρmηad

-------------------------- 1 ρmηad

ρ1
--------------– 

  τtω 1 ρmηad

ρ1
--------------– 

 = =

DISSf τnωn 1 ηad
ρm

ρ1
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  ∆t αf
nρf

nCpf
n

αg
nρg

nCpg
n αf

nρf
nCpf

n+
----------------------------------------------

 
 
 

=

DISSf τnωn 1 ηad
ρm

ρ1
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  ∆t αg
nρg
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n

αg
nρg

nCpg
n αf

nρf
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----------------------------------------------

 
 
 

=

m· C
m·

ρ0 in, a0 in, D2
---------------------------=

NC
ND
a0 in,
---------=
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for the corrected speed, where subscript '0' designates total or stagnation,  'in' designates the inlet station, 'a'
is the sound speed, and 'D' represents the turbomachine size.   The relative corrected mass flow rate, v, is
given as 

(3.5-315)

and the relative corrected speed, α, is given as

(3.5-316)

where D cancels from the numerator and the denominator.  Equations (3.5-315) and (3.5-316) should be
used to correct mass flow rate and speed entries in the performance table.  If the fluid is an ideal gas, then
the equations for corrected mass flow and speed are reduced to functions of pressure and temperature:

(3.5-317)

and

(3.5-318)

If the fluid species does not change, R and γ can be omitted leaving 

(3.5-319)

and

 , (3.5-320)

respectively.  It is most general to require input of rated fluid density and rated sonic speed as the input
variables.  Therefore, the ideal gas form, if desired, should be converted to rated fluid density and rated
sonic speed for input to the compressor model.

v m·
ρ0 in, a0 in,
-------------------- 

  m·
ρ0 in, a0 in,
-------------------- 

 
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---------------------- 
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NC
N
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γRT0 in,

----------------------= =

m· C
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N
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4  Heat Structure Models

4.1  Heat Conduction Numerical Techniques

Heat structures provided in ATHENA permit calculation of the heat transferred across solid
boundaries of hydrodynamic volumes. Modeling capabilities of heat structures are general and include fuel
pins or plates with nuclear or electrical heating, heat transfer across steam generator tubes, and heat
transfer from pipe and vessel walls.  Temperatures and heat transfer rates are computed from the
one-dimensional form of the transient heat conduction equation for non-reflood and from the
two-dimensional form of the transient heat condution equation for reflood. The one-dimensional form is
discussed first. The two-dimensional form is discussed in Section 4.9.

For one-dimensional heat conduction, heat structures are represented using rectangular, cylindrical,
or spherical geometry. Surface multipliers are used to convert the unit surface of the one-dimensional
calculation to the actual surface of the heat structure. Temperature-dependent  and space-dependent
thermal conductivities and volumetric heat capacities are provided in tabular or functional form either from
built-in or user-supplied data.

The one-dimensional heat conduction model is based on the one-dimensional time dependent or

steady state heat conduction code HEAT 14.1-1 developed at the INEEL [previously called the NRTS

(National Reactor Testing Station)].  The HEAT-1 code was first converted to the HEAT-1 subcode4.1-2

and later incorporated into RELAP5. Finite differences are used to advance the heat conduction solutions.
Each mesh interval may contain a different mesh spacing, a different material, or both. The spatial
dependence of the internal heat source may vary over each mesh interval. The time-dependence of the heat
source can be obtained from reactor kinetics, one of several tables of power versus time, or a control
system variable. Boundary conditions include symmetry or insulated conditions, a correlation package,
tables of surface temperature versus time, heat flux versus time, and heat transfer coefficient versus time or
surface temperature. The heat transfer correlation package can be used for heat structure surfaces
connected to hydrodynamic volumes, and contains correlations for convective, nucleate boiling, transition
boiling, and film boiling heat transfer from the wall to the fluid and reverse heat transfer from the fluid to
the wall including condensation.

The following describes the numerical techniques for heat conduction. The integral form of the heat
conduction equation is

(4.1-1)

where

k = thermal conductivity

ρCp T x,( )∂T
∂t
------ x t,( )dV∫

V
∫∫ k T x,( )∇T x t,( ) ds S x t,( )dV∫

V
∫∫+•

S
∫∫=
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s = surface

S = internal volumetric heat source

t = time

T = temperature

V = volume

x = space coordinates

ρCp = volumetric heat capacity.

The boundary conditions applied to the exterior surface have the form

. (4.1-2)

The n denotes the unit normal vector away from the boundary surface. Thus, if the desired boundary
condition is that the heat transferred out of the surface equals a heat transfer coefficient, h, times the
difference between the surface temperature, T, and the sink temperature, Tsk, i.e., 

(4.1-3)

then the correspondence between the above expression and Equation (4.1-2) yields

A = h, B = k, and D = h Tsk . (4.1-4)

In one-dimensional problems, boundary conditions are applied on the left and right surfaces.
ATHENA uses the terms “left” and “right” to describe the opposite sides of a heat structure. This has no
particular geometric interpretation for rectangular goemetry heat structures but does for cylindrical and
spherical heat structures. By convention, the right surface represents the outside diameter and the left
surface represents the inside diameter. For solid cylinders and spheres, therefore, the left surface is actually
a point (a cylinder or sphere with zero inside diameter). For all three geometries (rectangular, cylindrical,
and spherical), the left boundary coordinate must be less than the right boundary coordinate because the
mesh increments are positive. In steady-state problems, a valid physical problem requires that A be
nonzero on at least one of the two boundary surfaces. If a transient or steady-state problem has cylindrical
or spherical geometry and a zero radius for the left surface (that is, a solid cylinder or sphere), the left

A T( )T t( ) B T( )∂T t( )
∂n

-------------+ D T t,( )=

 k∂T
∂n
------– h T Tsk–( )=
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boundary condition is normally the symmetry condition, . Under these conditions, if B is nonzero,

the numerical technique forces the symmetry boundary condition, even if it is not specified.

4.1.1  References

4.1-1. R. J. Wagner, HEAT-1  A One-Dimensional Time Dependent or Steady State Heat Conduction
Code for the IBM-650, IDO-16867, National Reactor Testing Station, April 1963.

4.1-2. J. A. McClure, Guide to the HEAT-1 Subcode, Aerojet Nuclear Company, National Reactor
Testing Station, October 1972.

4.2  Mesh Point and Thermal Property Layout

Figure 4.2-1 illustrates the placement of mesh points at which temperatures are to be calculated. The
mesh point spacing for a rectangular problem is taken in the positive x-direction. For cylindrical and
spherical problems, the mesh point spacing is in the positive radial direction. Mesh points are placed on the
external boundaries of the problem, at the interfaces between different materials, and at desired intervals
between the interfaces, boundaries, or both.

Figure 4.2-2 represents three typical mesh points. The subscripts are space indexes indicating the
mesh point number; and l and r (if present) designate quantities to the left and right, respectively, of the

mesh point. The δ’s indicate mesh point spacings that are not necessarily equal. Between mesh points, the

thermal properties, k and ρCp, and the volumetric source term, S, are assumed spatially constant; but klm is

not necessarily equal to krm and similarly for ρCp and S.

To obtain the spatial-difference approximation for the m-th interior mesh point, Equation (4.1-1) is

applied to the volume and surfaces indicated by the dashed line shown in Figure 4.2-2. For the spatial
difference approximation at the boundaries, Equation (4.1-1) is applied to the volumes and interior

surfaces indicated by the dashed lines shown in Figure 4.2-3, and Equation (4.1-2) is used to define the
gradient along the exterior surfaces. If the coefficient of the gradient in the boundary equation is zero, the

Figure 4.2-1 Mesh point layout.

∂T
∂n
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Composition
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Mesh points

Mesh point
numbering

1  2 3  4 etc.

Boundary
Left Right
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surface temperature is given directly from Equation (4.1-2). Since the code is one-dimensional, the
dimensions of the volume for other than the x or r coordinate are set to one. For rectangular geometry, the
volume is a rectangular solid. For cylindrical geometry, the volume is a cylindrical annulus; and for
spherical geometry, the volume is a spherical shell.

The spatial finite-difference approximations use exact expressions for the space and volume factors
and simple differences for the gradient terms. To condense the expressions defining the numerical
approximations and to avoid writing expressions unique to each geometry, the following quantities are
defined:

For rectangular geometry,

Figure 4.2-2 Typical mesh points.

Figure 4.2-3 Boundary mesh points.

m-1

δlm

m

δrm

δlm
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(ρCp)lm

klm krm
(ρCp)rm
Srm

m+1

2
δrm
2

δr1 δlM 
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. (4.2-1)

For cylindrical geometry,

(4.2-2)

For spherical geometry,

(4.2-3)

For all geometries,

. (4.2-4)

The superscripts, v and s, refer to volume and surface-gradient weights. The  is a surface weight

used at exterior boundaries and in heat transfer rate equations.

4.3  Difference Approximation at Internal Mesh Points

Using a forward difference for the time derivative, the first term of Equation (4.1-1) for the volume

of Figure 4.2-1 is approximated by

. (4.3-1)

The superscript n refers to time; thus,  indicates the temperature at mesh point m at time tn, and

 indicates the temperature at mesh point m at time tn+1 = tn + ∆t.
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The second term of Equation (4.1-1) for the surfaces of Figure 4.2-2 is approximated by

. (4.3-2)

Note that the above expression includes the standard interface conditions of continuity of
temperature and heat flow. The surface integral of Equation (4.1-1) is usually evaluated by integrating only

along the exterior surfaces of the volume indicated by the dashed line in Figure 4.2-2. If, however, the
volume is divided into two sub-volumes by the interface line and the surface integrals of these
sub-volumes are added, the surface integrals along the common interface cancel because of the continuity
of heat flow. The continuity of temperature is implied by use of a single-valued temperature at the
interface.

A contact-resistance interface condition cannot be specified directly since the temperature, instead of

being continuous at the interface, is given by q = hc∆T, where q is the heat transfer rate across the

interface, hc is the contact conductivity, and ∆T is the temperature change across the interface. This

condition can be specified by defining a small mesh interval with thermal properties of k = hcδ and ρ = 0.

The size of the mesh interval, δ, is arbitrary except in cylindrical or spherical geometry, where the surface
and volume weights are dependent on the radius. This mesh interval is usually chosen very small with

respect to the dimensions of the problem. Experience has shown that too small a δ can result in oscillations.

The space and time-dependence of the volumetric source term in Equation (4.1-1) is assumed to be
separable into functions of space and time,

S(x,t)  =  PfP(t)Q(x) (4.3-3)

where Pf is the factor that relates the reactor power (or power from a table or control variable) to the heat

generation rate for a particular heat structure; P(t) is the time-varying function and may be reactor power,
power from a table, or a control variable; and Q(x) is the space-dependent function. For this
one-dimensional model, Q(x) is assumed to vary only in the x direction. The value of Q(x) is assumed
constant over a mesh interval, but each interval can have a different value. The third term of Equation
(4.1-1) is then approximated as

. (4.3-4)

Gathering the approximations of terms in Equation (4.1-1), the basic difference equation for the m-th
mesh point is

k T x,( )∇T x t,( )ds  Tm 1– Tm–( )klmδlm
s Tm 1+ Tm–( )krmδrm

s+≈
S
∫∫

S x t,( )dV  PfP t( ) Qlmδlm
v Qrmδrm

v+( )≈∫
V
∫∫
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(4.3-5)

Using the symbol, ζm, to represent the right side, Equation (4.3-5) can be written as

. (4.3-6)

Thus far, the time superscripts for Gm and ζm have been omitted, and the procedure for

approximating the temperature-dependence of the thermal properties has not been mentioned. The
procedures for temperature-dependent thermal properties are discussed later. However, superscripts for
thermal properties are written here even though their significance is not explained until later. For
steady-state, the difference approximation becomes

ζm  =  0 (4.3-7)

and no time superscripts are needed. For the time-dependent case, an equation of the type

(4.3-8)

is an explicit formula if w is zero and is an implicit formula when w is nonzero. ATHENA uses the implicit

formulation with w = 1/2, sometimes called the Crank-Nicolson method.4.3-1

Writing Equation (4.3-8) in full, the difference approximation for the m-th interior mesh point for
transient and steady-state cases is

(4.3-9)

(4.3-10)

(4.3-11)
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s Tm 1+ Tm–( )krmδrm
s+=

PfP t( ) Qlmδlm
v Qrmδrm

v+( )  . +

Tm
n 1+ Tm

n–( )Gm

∆t
------------------------------------- ζm=

Tm
n 1+ Tm

n–( )Gm

∆t
------------------------------------- wζm

n 1+ 1 w–( )ζm
n+=

am
n Tm 1–

n 1+ bm
n Tm

n 1+ cm
n Tm 1+

n 1++ + dm=

am
n  klm

n δlm
s ∆t

σ 1+
---------------------–=

bm
n σGm

n am
n– cm

n–=
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(4.3-12)

(4.3-13)

where σ is 1 for transient cases, and σ is 0 and ∆t is 1.0 for steady-state cases. Separate subroutines are

used for steady-state and transient cases, and σ and ∆t do not appear in the steady-state coding.

4.3.1  References

4.3-1. J. Crank and P. Nicolson, “A Practical Method for Numerical Evaluation of Solutions to Partial
Differential Equations of the Heat Conduction Type,” Proceedings of the Cambridge
Philosophical Society, 43, 1947, pp. 50-67.

4.4  Difference Approximation at Boundaries and Boundary Condition 
Parameters.

To obtain the difference approximations for the mesh points at the boundaries, Equation (4.1-1) is

applied to the volumes of Figure 4.2-3 with Equation (4.1-2) used to define the gradient at the surface. The
second term of Equation (4.1-1) at x = x1 is approximated by

. (4.4-1)

The complete basic expression for the left boundary mesh point becomes

. (4.4-2)

If B in the boundary condition equation is zero, the above equation is not used, since the boundary
condition alone determines the temperature. Also in that case, a divide by zero would be indicated if
Equation (4.4-2) were used. Approximations for the boundary at x = xm are derived in a similar fashion.

These equations for the boundary mesh points are converted to the implicit formulas in the same manner as
for the interior mesh points, except that the boundary condition information is evaluated completely at the
n+1 time level. Thus, for the left boundary

(4.4-3)

cm
n  krm

n δrm
s ∆t

σ 1+
---------------------–=

dm  σam
n Tm 1–

n– σ Gm
n am

n cm
n+ +( )Tm

n σcm
n Tm 1+

n–+=

∆tPf
Pn 1+ σPn+

σ 1+
--------------------------- 

  Qlmδlm
v Qrmδrm

v+( ) ,+

k T x,( )∇T x t,( ) ds•
S
∫∫

krl

B1
------ A1T1 D1–( )δ1

b– krl T2 T1–( )δrl
s+=

T1
n 1+ T1

n–( )
∆t

---------------------------- ρCp( )rlδrl
v krl

B1
------ A1T1 D1–( )δ1

b– kr1 T2 T1–( )δrl
s PfP t( )Qrlδrl

v+ +=

b1
nT1

n 1+ c1
nT2

n 1++ d1=
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(4.4-4)

(4.4-5)

. (4.4-6)

For the right boundary,

(4.4-7)

(4.4-8)

(4.4-9)

. (4.4-10)

The boundary condition parameters, A, B, and D, are considered functions of temperature and time.

4.5  Thermal Properties

The thermal conductivity, k, and the volumetric heat capacity, ρCp, are considered functions of

temperature and space. These thermal properties are obtained for each interval by using the average of the
mesh point temperatures bounding the interval. The thermal conductivity is obtained from

(4.5-1)

. (4.5-2)

b1
n σ ρCp( )r1

n δr1
v kr1

n A1
nδ1

b∆t
B1

n
------------------------- c1

n–+=

c1
n  kr1

n δr1
s ∆t

σ 1+
-------------------–=

d1 σc1
nT2

n– σ ρCp( )r1
n δr1

v c1
n+[ ]T1

n kr1
n δ1

bD1
n∆t

B1
n

------------------------- Pf
σPn Pn 1++( )Qr1δr1

v ∆t
σ 1+

-----------------------------------------------------+ + +=

aM
n TM 1–

n 1+ bM
n TM

n 1++ dM=

aM
n   klM

n δlM
s ∆t

σ 1+
------------------------–=

bM
n σ ρCp( )lM

n δlM
v klM

n AM
n δM

b ∆t
BM

n
----------------------------- aM

n–+=

dM σaM
n TM 1–

n– σ ρCp( )lM
n δlM

v aM
n+[ ] TM

n⋅ ⋅
klM

n δM
b DM

n ∆t
BM

n
----------------------------- P+ f

σPn Pn 1++( )QlMδlM
v ∆t

σ 1+
--------------------------------------------------------+ +=

kl m, k Tm 1– Tm+
2

------------------------- 
  kr m 1–,= =

kr m, k Tm Tm 1++
2

-------------------------- 
  kl m 1+,= =
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ATHENA/2.3
The volumetric heat capacity  is treated in the same manner. 

Thermal properties for five materials are stored internally in the code: fuel rod gap gas, carbon steel,
stainless steel, uranium dioxide, and zircaloy. The data in the code are consistent with those in

MATPRO4.5-1 where possible. Constant room-temperature densities (ρ) are multiplied by
temperature-dependent specific heat capacities (CP) to generate the volumetric heat capacities. For all of

the properties, constant values are assumed beyond the specified temperature ranges. Arbitrary low and
high values of 5 and 5,000 K are included to prevent code failures with out-of-range material property data.

Representative gap gas properties are developed for a combination of fill and fission product gases.
A 0.1066/0.1340/0.7594 mole fraction He/Kr/Xe mixture is modeled.

From Section 12.1.1 of the MATPRO manual4.5-1, the gas mixture thermal conductivity is given by

(4.5-3)

where

(4.5-4)

and

(4.5-5)

and

 = 

n = number of components in mixture (dimensionless)

kmix
kixi

xi 1 δij–( )Ψijxi

j 1=

n

∑+

--------------------------------------------------
i

n

∑=

Ψij φi j 1 2.41 Mi Mj–( ) Mi 0.142Mj–( )

Mi Mj–( )2
--------------------------------------------------------------+=

φij

1 ki

kj
---- 

 
1
2
---

Mi

Mj
------ 

 
1
4
---

+

2

2
2
3
---

1 Mi

Mj
------+ 

 
1
2
---

--------------------------------------------=

δij
1 for i = j
0 otherwise




INEEL-EXT-98-00834-V1 4-10



ATHENA/2.3
Mi = molecular weight of component i (kg)

xi  =  mole fraction of component i (dimensionless), and

ki =  thermal conductivity of component i (W/m·K).

The thermal conductivities of the three elements are given by

(4.5-6)

 Using these equations, thermal conductivity values as a function of the mixture temperature are
provided for temperatures from 300 to 3,000 K. 

For the gap gases, the perfect gas relation is used to determine the specific heat capacity (Section

13.1.1 of Reference 4.5-2). It is given by 

(4.5-7)

The molecular weight (MW) of the mixture is

(4.5-8)

Using the mixture molecular weight of 111.37 kg/kmol,

(4.5-9)

A representative fuel rod internal pressure of 4.1 MPa is assumed to determine the gap gas density.
Using the perfect gas relation and a temperature of 300 K yields

(4.5-10)

kHe 2.639 10 3– T0.7085×=

kKr 8.247 10 5– T0.8363×=

kXe 4.351 10 5–× T0.8616 .=

Cp 2.5 Ro× 2.5 8.3143 103×× 2.0786 104× J
kmol K⋅
----------------------= = =

MW 4.003 0.1066 83.3 0.1340 131.3 0.7594×+×+× 111.37 kg
kmol
-------------  .= =

Cp 2.0786 104 111.37⁄× 186.65 J
kg K⋅
---------------  .= =

ρ P MW⋅
RoT

------------------- 4.1 106×
8.3143 103 300⋅×
--------------------------------------------kmol

m3
------------- 111.37 kg

kmol
-------------× 183.06kg

m3
------= = =
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Since both the specific heat capacity and the density are constant, a constant value is entered for the
gap volumetric heat capacity. It is given by

(4.5-11)

The Nuclear Systems Materials Handbook4.5-3 contains data for a range of medium carbon steels
(0.18-0.35% carbon), in which there are some fairly large differences in material properties. Data for C-Mn

steel (>1.0% Mn, ≤0.10% Si) will be used, as its thermal conductivity was in between the values for the
two other alloys presented in the handbook.

The thermal conductivity is given by

(4.5-12)

where k is in Btu/hr·ft·°F and T is in °F. The range of the presented data is from 70 to 1,650 °F (294 to
1,172 K).

The carbon steel specific heat capacity is given by

(4.5-13)

for 70 < T < 1,350 ºF and

(4.5-14)

for 1,450 < T < 1,600 ºF. Linear interpolation is used between the boundaries (1,350 °F and 1,450 °F) of
the two equations.

The reference density is 7,856 kg/m3. 

The thermal conductivity of type 304 stainless steel is provided in Section 6.3 of the MATPRO
manual. The equations are

(4.5-15)

ρCp 183.06 186.65× 3.417 104 J
m3 K⋅
---------------×= =

k 27.975 3.1432 10 3– T 3.6548 10 6– T2×+×– 1.3289 10 8– T3×– 5.6749 10 12– T4×+=

Cp 8.7306 10 2–× 1.7812 10 4– T 2.6758 10 7– T2×–× 1.6445 10 1– T3×+ +=

Cp 4.1612 5.0480 10 3– T 1.6000 10 6–×+× T2–=

k
7.58 0.0189T+

610.9393 0.342176T–

20





=
for 300 T 1 671 K,<≤
for 1 671, T 1 727 K,<≤
for T 1 727 K,≥
INEEL-EXT-98-00834-V1 4-12



ATHENA/2.3
The stainless steel specific heat capacity is given in Section 6.2 of the MATPRO manual. The equations are

(4.5-16)

The reference density is 7,800 kg/m3. 

The uranium dioxide thermal conductivity data are taken from Section 2.3 of the MATPRO manual.
The general equation for the thermal conductivity of solid fuel is

(4.5-17)

where

k  = thermal conductivity (W/m·K)

D = fraction of theoretical density (dimensionless); a value of 0.95 is assumed

CV = phonon contribution to the specific heat at constant volume (J/kg·K). For pure

UO2, this is given by

(4.5-18)

eth = linear strain term for temperatures above 300 K (dimensionless), which is given

by 

eth = ∆L/L0 

= 1.0 x 10-5T – 3.0 x 10-3 + 4.0 x 10-2 exp (-6.9 x 10-20/1.38 x 10-23T).

T = fuel temperature (K)

Cp
326 0.242T– 3.71T0.719+

691.98



=
for 300 T 1 771 K,<≤
for T 1 771 K,≥

k D
1 T' 1 D–( )+
--------------------------------

Cv

A BT''+( ) 1 3eth+( )
------------------------------------------------- +

5.2997 10 3–× Te
13 358,–

T
--------------------- 

 

1 0.169 13 358,
T

------------------ 
  2+

2
+

 
 
 

=

Cv
296.7 535.2852 e

535.285
T

------------------- 
 

××

T2 e
535.285

T
------------------- 

 

1–

2
------------------------------------------------------------------=
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ATHENA/2.3
 = 6.5-0.00469 T if fuel temperature < 1,364 K. For temperatures > 1,834 K,   =
-1. Values are interpolated between these two temperatures.

 = fuel temperature if < 1,800 K. For temperatures > 2,300 K,   = 2,050 K.
Values are interpolated between these two temperatures.

A  = a factor proportional to the point defect contribution to the phonon mean free
path. Assuming an oxygen-to-metal ratio of 2.0, this factor is 0.339 m·s/kg·K.

B  = a factor proportional to the phonon-phonon scattering contribution to the
phonon mean free path. Assuming no plutonium, this factor is 0.06867
m·s/kg·K.

For liquid UO2, a constant value is used. It is given by

(4.5-19)

The melting of pure UO2 is an isothermal process. For the code input, the transition from solid to

liquid is modeled to occur between 3,113.15 and 3,114 K. The lower limit on the calculated values is 300
K.

The specific heat capacity information is provided in Section 2.2 of the MATPRO manual. Assuming
that the material is pure UO2 (no PuO2), and that the oxygen-to-metal ratio is 2.0, 

(4.5-20)

for solid material, and

for liquid.

The reference density is 10,980 kg/m3. A lower temperature limit of 300 K is calculated.

T' T'

T'' T''

k 11.5 W/m K .⋅=

Cp
296.7 535.2852 e

535.285
T

------------------- 
 

××

T2 e
535.285

T
------------------- 

 

1–

2
------------------------------------------------------------------ 2.43 10 2– T +×+

2 8.745 107 1.577 105××××
2 8.3143 T2××

-----------------------------------------------------------------------e
- 1.577 105×

8.3143T
---------------------------- 

 

=

Cp 503 J/kg K⋅=
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ATHENA/2.3
The zircaloy thermal conductivity is taken from Section 4.4 of the MATPRO manual. The equations
used are

The transition from solid to liquid, with the accompanying reduction in thermal conductivity, occurs
between 2,098 and 2,125 K; these are the solidus and liquidus temperatures for zircaloy with a zero
oxidation concentration (MATPRO manual, Section 4.1.1). 

The specific heat capacity for zircaloy is a table lookup (see Table 4-2 in the MATPRO manual) with
a temperature range of 300-1,248 K.

The reference density is 6,551 kg/m3.

4.5.1  References

4.5-1. L. J. Siefken, E. W. Coryell, E. A. Harvego, and J. K. Hohorst, SCDAP/RELAP5/MOD3.3 Code
Manual, Volume 4: MATPRO – A Library of Material Properties for Light-Water-Reactor
Accident Analysis, NUREG/CR-6150, INEL-96/0422, Vol. 4, Rev. 2, Idaho National
Engineering and Environmental Laboratory, January 2001.

4.5-2. J. K. Hohorst, ed., SCDAP/RELAP5/MOD2 Code Manual, Volume 4: MATPRO – A Library of
Material Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-5273, EGG-2555,
Vol. 4, Idaho National Engineering Laboratory, February 1990.

4.5-3. Nuclear Systems Materials Handbook – Volume 1, Design Data, TID-26666, Revision 37, Oak
Ridge National Laboratory, September 1988.

4.6   ATHENA Specific Boundary Conditions

The development of the difference equations uses a general form for the boundary conditions and the
specific conditions implemented in ATHENA are expressed in that form. For heat structure boundaries
attached to hydrodynamic volumes, a convective package is typically used to define the boundary
conditions. In addition, symmetry or insulated conditions are provided, and for special situations, tabular
based conditions or control variable based conditions can be specified.

4.6.1  Correlation Package Conditions

The correlation package partitions the total heat flux at the heat structure surface into heat fluxes
from or to the liquid and vapor/gas phases. The heat fluxes are defined using five heat transfer coefficients
and four fluid/saturation temperatures. They are given by

qwf  =  hwff[Tsr - Tf] + hwfT[Tsr - T
s(P)] (4.6-1)

k 7.51 2.09 10 2– T 1.45 10 5– T2 7.67 10 9– T3×+×–×+

36



=
for 300 T 2 089 K,<≤
for T 2 089 K,≥
4-15 INEEL-EXT-98-00834-V1



ATHENA/2.3
qwg  =  hwgg[Tsr - Tg] + hwgT[Tsr - T
s(P)] + hwgp[Tsr - T

s(Ps)] (4.6-2)

qb  =  qwf + qwg (4.6-3)

where

qwf = heat flux to liquid

qwg = heat flux to vapor/gas

qb = total heat flux

Tsr = surface temperature

Tf = liquid temperature

Tg = vapor/gas temperature

Ts(P) = saturation temperature based on total pressure

Ts(Ps) = saturation temperature based on partial pressure of vapor

hwff = heat transfer coefficient for difference of surface temperature and liquid

temperature for heat transfer to liquid

hwfT = heat transfer coefficient for difference of surface temperature and saturation

temperature corresponding to total pressure for heat transfer to liquid

hwgg = heat transfer coefficient for difference of surface temperature and vapor/gas

temperature for heat transfer to vapor/gas

hwgT = heat transfer coefficient for difference of surface temperature and saturation

temperature corresponding to total pressure for heat transfer to vapor/gas

hwgp = heat transfer coefficient for difference of surface temperature and saturation

temperature corresponding to partial pressure of vapor for transfer to vapor/gas.

Using first order Taylor series approximations,

(4.6-4)qwf
n 1+ qwf

0 ∂qwf

∂Tsr
----------∆Tsr

∂qwf

∂Tf
----------∆Tf

∂qwf

∂Ts P( )
-----------------∆Ts P( )+ + +=
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(4.6-5)

where ∆ is an operator, ∆F = Fn+1 - Fn.

Note that  and  are not old-time values of heat fluxes but instead are the heat fluxes obtained

from the correlations using old-time surface temperature and fluid conditions. Because only new-time
boundary condition information is used in the difference equations, the old-time heat fluxes do not appear
in the difference equations.

Assuming the heat transfer coefficients are constant over a time step,

(4.6-6)

(4.6-7)

(4.6-8)

(4.6-9)

(4.6-10)

(4.6-11)

. (4.6-12)

Then,

(4.6-13)

qwg
n 1+ qwg

0 ∂qwg

∂Tsr
-----------∆Tsr

∂qwg

∂Tg
-----------∆Tg

∂qwg

∂Ts P( )
-----------------∆Ts P( )

∂qwg

∂Ts Ps( )
------------------∆Ts Ps( )+ + + +=

qwf
0 qwg

0

∂qwf

∂Tsr
---------- hwff hwfT+=

∂qwf

∂Tf
----------  hwff–=

∂qwf

∂TT
----------  hwfT–=

∂qwg

∂Tsr
----------- hwgg hwgT hwgp+ +=

∂qwg

∂Tg
-----------  hwgg–=

∂qwg

∂Ts P( )
-----------------  hwgT–=

∂qwg

∂Ts P( )
-----------------  hwgp–=

qwf
n 1+ qwf

0 hwff hwfT+[ ]∆Tsr hwff∆Tf– hwfT∆Ts P( )–+=
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(4.6-14)

(4.6-15)

where

hb = hwff + hwfT + hwgg + hwgT + hwgp . (4.6-16)

Expressing Equation (4.6-15) in terms of the general boundary condition Equation (4.1-2),

A = - hb (4.6-17)

B = - k (4.6-18)

. (4.6-19)

4.6.2  Insulated and Tabular Boundary Conditions

The other boundary conditions implemented in ATHENA are given below. The first two conditions
are flux-specified conditions; the first condition is a symmetry or insulated condition and is just a special
case of the second condition. The third condition is a convection condition similar to that used with the
correlation package except that only a total heat transfer coefficient which is a tabular function of time or
surface temperature is used. The fourth condition directly specifies the surface temperature. The four
conditions are

(4.6-20)

(4.6-21)

(4.6-22)

T = TTA(t) (4.6-23)

where

qwg
n 1+ qwg

0 hwgg hwgT hwgp+ +[ ]∆Tsr hwgg∆Tg– hwgT∆Ts P( )– hwgp∆Ts Ps( )–+=

qb
n 1+ qwf

0 qwg
0 hb∆Tsr hwff∆Tf– hwgg∆Tg– hwfT hwgT+[ ]∆Ts P( )  hwgp∆Ts Ps( )––+ +=

D qwf
0 qwg

0   hb– Tsr
n 1+ hwff∆Tf– hwgg∆Tg– hwfT hwgT+[ ]∆Ts P( )– hwgp∆Ts Ps( )–+=

 k∂T
∂x
------– 0=

 k∂T
∂x
------– qTA t( )=

 k∂T
∂x
------– hTA T TTA–( )=
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qTA = the total heat flux as a function of time obtained from input tables

hTA = the total heat transfer coefficient as an input tabular function of either time or

surface temperature

TTA = an input general temperature table tabular function of time, an input control

variable that calculates the temperature, or the volume fraction weighted
average of the liquid and vapor/gas temperatures of the hydrodynamic volume
attached to the boundary.

4.7  Solution of Simultaneous Equations

The difference approximation for the mesh points [Equations (4.3-9), (4.4-3), and (4.4-7)] lead to a
tri-diagonal set of M equations.

. (4.7-1)

Equations 1 and M correspond to the left and right boundary mesh points respectively, and equations
2 through M-1 correspond to the interior mesh points. The terms in d2 through dM-1 do not include any of

the fluid or saturation temperatures, Tf, Tg, Ts(P), and Ts(Ps). The terms in d1 and dM do include the fluid

or saturation temperatures, and d1 and dM can be expressed as

d1 = d10 + d1f∆T1f + d1g∆T1g + d1T  + d1p (4.7-2)

dM = dM0 + dMf∆TMf + dMg∆TMg + dMT  + dMp (4.7-3)

where the first subscript, 1 or M, has been introduced to indicate the left or right boundary. The coefficient
matrix is symmetric unless a boundary condition specifies the surface temperature. In that case, the
corresponding off-diagonal element is zero and thus symmetry may not exist in the first and/or last rows.
The solution to the above equation is obtained by

(4.7-4)

b1 c1

a2 b2 c2

• • •
• • •

aM 1– bM 1– cM 1–

aM bM

T1

T2

•
•

TM 1–

TM

d1

d2

•
•

dM 1–

dM

=

∆T1
s P( ) ∆T1

s Ps( )

∆TM
s P( ) ∆TM

s Ps( )

E1
c1

b1
-----  and  F1

d1

b1
-----= =
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 and for j = 2, 3, ..., M-1 (4.7-5)

(4.7-6)

gj = - Ejgj+1 + Fj   for j = M-1, M-2, ..., 3, 2, 1 (4.7-7)

   for all j . (4.7-8)

These procedures can be derived by applying the rules for Gaussian elimination. This method of
solution introduces little roundoff error if the off-diagonal elements are negative and the diagonal is greater
than the sum of the magnitudes of the off-diagonal elements. From the form of the difference equations,
these conditions are satisfied for any values of the mesh point spacing, time step, and thermal properties.

Expanding the expression for gj in Equation(4.7-8) using Equations (4.7-4) through (4.7-7), gives

(4.7-9)

The nine g factors in Equation (4.7-9) are functions of the terms aj, bj, cj (j=1, ...,M), d10, d1f, d1g,

d1T, d1p, dj (j=2, ..., M-1), and dM0, dMf, dMg, dMT, dMp in Equations (4.7-1), (4.7-2), and (4.7-3). For the

first g factor (gj0), the first subscript, j, indicates the mesh point number, and the second subscript, 0,

indicates that no particular fluid/saturation temperatures are used for this term. For the remaining eight g
factors (gj1f, gj1g, gj1T, gj1p, gjMf, gjMg, gjMT, gjMp), the first subscript indicates the mesh point number, the

second subscript indicates the boundary (1 for the left boundary and M for the right boundary), and the
third subscript indicates the particular fluid/saturation temperature (f, g,T, p).

In passing information to the hydrodynamics advancement, the effect of fluid/saturation temperature
changes on one boundary are ignored on the other boundary. Thus, the left and right boundary surface
temperatures are given by

(4.7-10)

. (4.7-11)

Ej
cj

bj ajEj 1––
-------------------------= Fj

dj ajFj 1––
bj ajEj 1––
-------------------------=

gM
dM aMFM 1––
bM aMEM 1––
--------------------------------=

Tj
n 1+ gj=

Tj
n 1+ gj gj0 gj1f∆T1f gj1g∆T1g gj1T∆T1

s P( ) gj1p∆T1
s Ps( )+ + + + += =

    gjMf∆TMf gjMg∆TMg gjMT∆TM
s P( ) gjMp∆TM

s Ps( )  . + + +

T1
n 1+ g10 g11f∆T1f g11g∆T1g g11T∆T1

s P( ) g11p∆T1
s Ps( )+ + + +=

TM
n 1+ gM0 gMMf∆TMf gMMg∆TMg gMMT∆TM

s P( ) gMMp∆TM
s Ps( )+ + + +=
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A user option allows an explicit or an implicit coupling between the heat conduction-transfer and
hydrodynamic time advancements. With the explicit option, the changes in hydrodynamic temperatures are
assumed zero at this point and the new-time temperatures are given by the first term, gj0, of Equation

(4.7-9). If the implicit advancement is used, the new time temperatures are computed using all the terms in
Equation (4.7-9) after the fluid temperatures are computed.

4.8  Computation of Heat Fluxes

When the correlation boundary condition package is used, the new-time heat fluxes to the liquid and
vapor/gas phases are computed by substituting the Equation (4.7-9) for the surface temperature into the
boundary conditions given in Equation (4.6-1) and (4.6-2). The expression for any temperature could
involve the fluid/saturation temperatures from both the left and right boundary volumes. If only one side of
the heat structure is attached to a hydrodynamic volume, that boundary condition would involve only those
volume conditions. That fits in well with the numerical approximations in the hydrodynamic solution
which assume the conservation equations for each volume include new time values only from that volume.
Most heat structures such as fuel pins, plates, or piping have only one side connected to a hydrodynamic
volume. An important case where the two sides are connected to two different volumes is a heat structure
representing heat exchanger tubing. This situation would involve unknown temperatures from more than
one volume in the energy equations for each attached volume and thus would not be compatible with the
hydrodynamic advancement scheme. To avoid this problem, the heat flux for one boundary ignores the
effects of fluid/saturation temperature changes in the other volume. This is a reasonable approximation
since the effects of fluid/saturation temperature changes on one side of the heat structure has a highly
attenuated effect on the heat flux on the other side.

Dropping the subscript for the particular surface, the expressions for heat fluxes are

(4.8-1)

(4.8-2)

The expression following the second equal sign in the equations above is a convenient gathering of
terms for passing heat flux information to the hydrodynamic advancement. The coefficients of the fluid
temperature changes are zero if the explicit coupling between the heat conduction-transfer and
hydrodynamics is used.

qwf
n 1+ qwf

0 hwff hwfT+[ ] g0 Tsr
n–[ ] hwff hwfT+[ ] gf∆Tf gg∆Tg gT∆Ts P( ) gp∆Ts Ps( )+ ++[ ]+ +=

hwff∆Tf hwfT∆Ts P( )––

qwf0 qwff∆Tf qwfg∆Tg qwfT∆Ts P( ) qwfp∆Ts Ps( )+ + + +=

qwg
n 1+ qwg

0 hwgg hwgT hwgp+ +[ ] g0 Tsr
n–[ ]+=

hwgg hwgT hwgp+ +[ ] gf∆Tf gg∆Tg gT∆Ts P( ) gp∆Ts Ps( )+ ++[ ]+

 hwgg∆Tg  hwgT∆Ts P( ) –  hwgp∆Ts Ps( )––

qwg0 qwgf∆Tf qwgg∆Tg qwgT∆Ts P( ) qwgp∆Ts Ps( )  . + + + +=
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For heat fluxes from boundaries not using the correlation package, a total heat flux is computed and
distributed to the liquid and vapor/gas phases in direct proportion to their volume fractions. The heat fluxes
are returned in qwf0 and qwg0, and the coefficients of the fluid/saturation temperature changes are set to

zero. For flux specified conditions, the total heat flux is given directly by the boundary condition. For a
convection boundary, the total heat flux is obtained by substituting in the surface temperature. If the other
boundary uses the convective package, the surface temperature is that assuming the fluid/saturation
temperature changes are zero. For the temperature-specified boundary, the heat flux is computed from the
boundary difference equation (even though it was not used to compute the temperature). The expression
for the right boundary (the left is similar) is

(4.8-3)

4.9  Two-Dimensional Conduction Solution/Reflood

A two-dimensional conduction scheme is used in the reflood model for cylindrical or rectangular

heat structures. Figure 4.9-1 shows an elemental cell around the mesh point. For a cylindrical geometry,
the volume elements are

(4.9-1)

(4.9-2)

(4.9-3)

(4.9-4)

qM
n 1+ δ1M

n k1M
n

σ 1+
------------- TM 1–

n 1+ TM
n 1+–( )δ1M

s σk1M
n

σ 1+
------------- TM 1–

n TM
n–( )δ1M

s+=

Pf
σPn Pn 1++( )

σ 1+
--------------------------------Q1Mδ1M

v σ ρCp( )1M
n

∆t
------------------------ TM

n 1+ TM
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v   . –+

V1 πδtδ1

ri
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4
-----–

2
--------------
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----+

2
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----+

2
--------------
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and the surface elements are

(4.9-5)

(4.9-6)

(4.9-7)

(4.9-8)

Figure 4.9-1 Volume and surface elements around a mesh point (i, j).
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A5  =  A2 (4.9-9)

A6  =  A1 (4.9-10)

(4.9-11)

. (4.9-12)

Integration of the heat conduction Equation (4.1-1) over the elemental cell yields the following form
of finite difference equation

(4.9-13)

By defining the material properties, (ρCp)ij and kij, at the center of the r-direction interval between

mesh points (i,j) and (i + 1,j), the coefficients Gij, , and  of Equation (4.9-13) can be written as

Gij = (ρCp)i-1,j (V1 + V3) + (ρCp)ij (V2 + V4) (4.9-14)

(4.9-15)

. (4.9-16)

The other two coefficients,  and , are obtained by the symmetry relations

(4.9-17)

. (4.9-18)
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The space and time-dependence of the volumetric source term, S, described in Equation (4.3-3) are
extended to the two-dimensional cases as

S(x,t)  =  Pf P(t) Q (r,z) (4.9-19)

with the assumption that Q is independent of z within a heat structure. For this two-dimensional model,
Q(r,z) is assumed to vary only in the r and z directions. Accordingly, the volumetric heat source term Sij of

Equation (4.9-13) is 

. (4.9-20)

Here,  and  if the entire cell is within the same heat structure.

Equation (4.9-13) is written for an interior point (i,j). For a point on the boundary, some of the

coefficients , , , and  should vanish. For example, at the bottom left corner,  and  are zero.

Also some of the terms in Equations (4.9-16) and (4.9-20) disappear. Furthermore, the boundary condition
must be added. To be consistent with the one-dimensional heat conduction scheme, an assumption is made
that no heat is fluxed across the top and bottom ends. For the right and left boundaries, the boundary
condition can be represented by one of the forms described in Equations (4.6-1), (4.6-2), and (4.6-20)
through (4.6-22). The boundary condition specifying the surface temperature as a function of time,
Equation (4.6-23), has been dropped in the two-dimensional scheme for computational efficiency.

The two-dimensional capability allows explicit or implicit coupling between the heat
conduction-transfer and hydrodynamics.

The difference Equation (4.9-13) is solved using the alternating direction implicit (ADI) method. The
scheme is represented by two steps as follows:

1. Column Inversion:

(4.9-21)

2. Row Inversion:

Sij PfP t( ) Ql
TV1 Ql

BV3 Qr
TV2 Qr

BV4+ + +( )=

Ql
T Ql

B= Qr
T Qr

B=

aij
L aij

R aij
B aij

T aij
L aij

B

Tij
n 1 2⁄+ Tij

n–( )Gij

∆t
2
----- 

 
---------------------------------------- aij

LTi 1 j,–
n aij

RTi 1 j,+
n aij

TTi j 1+,
n 1 2⁄+ aij

B+ Ti j 1–,
n 1 2⁄++ +=

 aij
L aij

R+( )– Tij
n aij

T aij
B+( )Tij

n 1 2⁄+– Sij  .+
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(4.9-22)

Here the superscripts n, n + , and n + 1 denote the values at times t, t + , and t + ∆t, respectively.

4.10  Fine Mesh Rezoning Scheme

A fine mesh-rezoning scheme is implemented to efficiently use the two-dimensional conduction

solution for reflood calculations. The scheme is similar to the one used in COBRA-TF4.10-1 and is intended
to resolve the large axial variation of wall temperatures and heat fluxes. The number of axial nodes in the
heat structures is varied in such a way that the fine nodes exist only in the nucleate boiling and transition
boiling regions.

A heat-structure geometry, which is composed of 1 to 99 heat structures as specified by users, is

selected as an elementary unit for the reflood model. Figure 4.10-1a shows a typical heat structure
geometry with one fluid-control volume connected to each heat structure. The dots are radial mesh points.

At the initiation of the reflood model, each heat structure is subdivided into two axial intervals (Figure
4.10-2b). A two-dimensional array of mesh points is thus formed. Thereafter, the number of axial intervals
may be doubled, halved, or unchanged at each time step according to a set of rules to be discussed in the

next paragraph. Figure 4.10-2 also shows an example of a heat structure going through a cycle of axial
nodalization variation.

The number of axial mesh intervals in a heat structure depends on the heat-transfer regimes in the
heat structures. At each time step, all heat structures in a heat-structure geometry are searched to find the
positions of TIB, the wall temperature at the incipience of boiling, and TCHF, the wall temperature where

critical heat flux occurs, and TQ, the quench or rewetting temperature. Let us assume that TIB, TCHF, and

TQ are at the i-, j-, and k-th heat structures and . Also, let N be the maximum number of axial mesh

intervals specified by the user and αg be the void fraction in the connected control volume. The number of

axial mesh intervals in a heat structure is determined according to the following rules:

• For αg > 0.999 or αg = 0, the number is halved but not less than 2.

• For the (k + 1)-th heat structure, the number is doubled but not greater than N/2.

• For the (i - 1)-th heat structure, the number is halved but not less than N/2.

• The number is doubled up to N for the heat structures between max (j + 1, k) and min (j-1,
i) and in the region of maximum wall temperature gradient.

Tij
n 1+ Tij
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• For all other heat structures, the number is unchanged.

4.10.1  Reference

4.10-1. J. M. Kelly, “Quench Front Modeling and Reflood Heat Transfer in COBRA-TF,” ASME Winter
Annual Meeting, New York, NY, 1979, 79-WA/HT-63.

4.11  Gap Conductance Model

The ATHENA dynamic gap conductance model defines an effective gap conductivity based on a

simplified deformation model generated from FRAP-T6.4.11-1 The model employs three assumptions as
follows: (a) the fuel-to-cladding radiation heat transfer, which only contributes significantly to the gap
conductivity under the conditions of cladding ballooning, is neglected unless the cladding deformation
model is activated (see Section 4.15); (b) the minimum gap size is limited such that the maximum effective

Figure 4.10-1 An elementary heat structure unit for reflood.

n-1

n

2

1

a b
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gap conductivity is about the same order as that of metals; (c) the direct contact of the fuel pellet and the
cladding is not explicitly considered.

The gap conductance through the gas is inversely proportional to the size of the gap. Since the
longitudinal axis of the fuel pellets is usually offset from the longitudinal axis of the cladding, the width of
the fuel-cladding gap varies with circumferential position. This variation causes the conductance through
the gas in the fuel-cladding gap to vary with circumferential position. The circumferential variation of the
conductance is taken into account by dividing the gap into several equal length segments, as shown in

Figure 4.11-1. The conductance for each segment is calculated and then an average conductance, hg, is

computed in the FRAP-T6 model by the equation

(4.11-1)

Figure 4.10-2 An example of the fine mesh-rezoning process.
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where

hg = conductance through the gas in the gap (W/m2•K)

n = number of a circumferential segment

N = total number of circumferential segments = 8

kg = thermal conductivity of gas (W/m•K)

tn = width of fuel-cladding gap at the midpoint of the n-th circumferential segment

(m)

RF = surface roughness of the fuel (m)

Rc = surface roughness of the cladding (m)

g1,g2 = temperature jump distance terms for fuel and cladding (m).

Figure 4.11-1 Segmentation at the fuel-cladding gap.
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The width of the fuel-cladding gap at any given circumferential segment is calculated by the equation

(4.11-2)

where

tg = circumferentially averaged fuel-cladding gap width (m)

to = as-fabricated fuel-cladding gap width (m).

The value of tn in Equation (4.11-2) is limited between zero and 2tg.

The temperature jump distance terms account for the temperature discontinuity caused by incomplete
thermal accommodation of gas molecules to the surface temperature. The terms also account for the
inability of gas molecules leaving the fuel and cladding surfaces to completely exchange their energy with
neighboring gas molecules, which produces a nonlinear temperature gradient near the fuel and cladding
surfaces. The terms are calculated by

(4.11-3)

where

Tg = temperature of gas in the fuel-cladding gap (K)

Pg = gas pressure (Pa)

fi = mole fractions of i-th component of gas

ai = accommodation coefficient of the i-th component of gas

Mi = molecular weight of the i-th component of gas.

The accommodation coefficients for helium and xenon are obtained by using curve fits to the data of

Ullman:4.11-2

aHe  =  0.425 - 2.3 x 10-4 Tg (helium) (4.11-4)

tn tg 1– 2n 1–
N

--------------- 
 + to+=

g1 g2+
0.024688kgTg

1 2⁄

Pg fiaiMi
1 2⁄–

i
∑

--------------------------------------=
INEEL-EXT-98-00834-V1 4-30



ATHENA/2.3
aXe  =  0.740 - 2.5 x 10-4 Tg (xenon) . (4.11-5)

If Tg is > 1,000 K, Tg is set to 1,000 K. The accommodation coefficients for other gases are

determined by interpolation and written as

. (4.11-6)

The circumferential averaged width of the fuel cladding gap, tg, in Equation (4.11-2) is determined

by the expression

tg  =  to - uF + uC (4.11-7)

where

uF = radial displacement of the fuel pellet surface (m)

uC = radial displacement of cladding inner surface (m).

The radial displacements, uF and uC, are primarily due to thermal expansion. The radial

displacement, of the fuel pellet surface, uF, is calculated by the equation

uF  =  uTF + ur + us (4.11-8)

where

uTF = radial displacement due to thermal expansion (m)

ur = radial displacement due to uniform fuel relocation (m)

us = radial displacement due to fission gas induced fuel swelling and densification

(m).

The fuel thermal expansion displacement, uTF, is obtained from

(4.11-9)

ai aHe
Mi MHe–( )

MXe MHe–( )
------------------------------- aXe aHe–( )+=

uTF rn rn 1––( )εTF T
n 1

2
---+ 

 
n 2=

N

∑=
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where

n = radial mesh point number

N = total number of mesh points in the fuel

rn = radius of radial mesh point n

εTF = fuel thermal expansion strain (function of temperature)

= average fuel temperature at the center on the node between mesh points n and

n+1(K).

The uniform fuel relocation displacement, ur is assumed to be zero. The fission gas induced swelling

and densification, us is supplied by the user. The radial displacement of the inner surface of the cladding is

calculated by

uC  =  uTC + ucc + ue (4.11-10)

where

uTC = radial displacement due to thermal expansion (m)

ucc = radial displacement due to cladding creepdown (m)

ue = radial displacement due to elastic deformation (m).

The cladding thermal expansion displacement, uTC, is obtained from

uTC  =  rcm εTC (Tc) (4.11-11)

where

rcm = radius of midplane of cladding (m)

εTC = cladding thermal expansion strain (function of temperature)

Tc = temperature of cladding at midplane (K).

T
n 1

2
---+
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The value of the cladding creepdown displacement, ucc must be supplied by the user. For

beginning-of-life fuel rods, ucc, is equal to zero. For fuel rods with a significant amount of burnup, a

FRAPCON-24.11-3 analysis is required to determine the value of ucc. The cladding creepdown strain is

given by the cladding creepdown displacement divided by rm. 

The cladding elastic deformation displacement, ue, is calculated by

(4.11-12)

where

= cladding elastic deformation strain

E = Young’s modulus for the cladding (Pa)

σh = cladding hoop stress (Pa)

σz = cladding axial stress (Pa)

ν = Poisson’s ratio for the cladding.

The cladding hoop and axial stress are given by

(4.11-13)

(4.11-14)

where

Pf = coolant pressure (Pa)

ri = inner radius of cladding (m)

ro = outer radius of cladding (m).

The Poisson’s ratio used is

ue rmεe = rcm
σh νσz–

E
-------------------- 

 =

εe

σh
Pgri Pfro–

ro ri–
------------------------=

σz
Pgri

2 Pfro
2–

ro
2 ri

2–
-------------------------=
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ν  =  0.3 . (4.11-15)

The internal gas pressure Pg is determined in FRAP-T64.11-1 by a detailed plenum model. Since a

plenum model is not included in the simplified approach, a static-ideal gas approximation for a
fixed-plenum volume is used to calculate Pg, i.e.,

(4.11-16)

where

Pg,i = initial gas pressure in the gap (Pa)

Tf,i = initial coolant temperature at the top of the core (K)

Tf = current coolant temperature at the top of the core (K).

The initial internal gas pressure must be supplied by the user.

The volumetric heat capacity and thermal conductivity of the fuel rod materials, except for the
thermal conductivity of the gap gas, must be supplied by the user. For the computation of the gas thermal
conductivity, the user is required to provide the gas composition in terms of the mole fractions of seven
common gases included in the model. The properties for determining material thermal expansion and
elastic deformation are calculated from permanent data within the code, and no user-input is needed. The
user, however, should be aware that these properties are computed under the assumption that the fuel
material is uranium oxide and the cladding material is zircaloy. The properties of UO2 and zircaloy along

with gas conductivity are taken from MATPRO-11 (Revision 2)4.11-4 and are described below.

The conductivity as a function of temperature for a pure noble or diatomic gas is calculated using

. (4.11-17)

Pg Pg i,
Tf

Tf i,
--------=

kg ATg
B=
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The constants A and B for seven common gases are given in Table 4.11-1. The thermal conductivity
of a gas mixture is calculated from the expression  

(4.11-18)

where

Φij = (4.11-19)

N = number of components in the mixture

Mi = molecular weight of component i

Xi = mole fraction of the component i

ki = thermal conductivity of the component i (W/m⋅K).

Table 4.11-1 Constants used in gas thermal conductivity correlation.

Constant

Gas
A

(W/m·K1+B)

B
(-)

Helium 2.639 x 10-3 0.7085

Argon 2.986 x 10-4 0.7224

Krypton 8.247 x 10-5 0.8363

Xenon 4.351 x 10-5 0.8616

H2 1.097 x 10-3 0.8785

N2 5.314 x 10-4 0.6898

O2 1.853 x 10-4 0.8729

kg
kiXi

Xi ΦijXj

j 1=

N

∑+

---------------------------------
i 1=

N

∑=

1 ki

kj
---- 

  1 2⁄ Mi

Mj
------ 

  1 4⁄
+

2

8 1 Mi

Mj
------+ 

  1 2⁄
----------------------------------------------------
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The strain function, εTF in Equation (4.11-9), of the UO2 fuel due to thermal expansion is described

by

(4.11-20)

where

T = fuel pellet temperature

kB = Boltzmann constant (1.38 x 10-23 J/K).

The radial strain function, εTC in Equation (4.11-11), for the cladding thermal expansion is given by

εTC  =  1.5985 x 10-3 + 6.721 x 10-6 T (4.11-21)

for T  <  1,073.15 K (α phase) and

εTC  =  - 4.150 x 10-3 + 9.7 x 10-6 T (4.11-22)

for T > 1,273.15 K (β phase), where T = cladding temperature (K). In the α to β phase transition zone

(1,073.15 K < T < 1,273.15 K), a table lookup is used. Some selected values are listed in Table 4.11-2.

Table 4.11-2 Radial thermal strain of zircaloy for 1083 K < T < 1273 K.

Temperature (K) εTC

1,083 5.22 x 10-3

1,093 5.25 x 10-3

1,103 5.28 x 10-3

1,123 5.24 x 10-3

1,143 5.15 x 10-3

1,183 4.45 x 10-3

1,223 2.97 x 10-3

1,273 2.90 x 10-3

εTF 1.0 5–×10 T  3.0 3–×10– 4.0 2–×10   6.9 20–×10–
kBT

----------------------------- 
 exp+=
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Young’s modulus, E, for zircaloy cladding is approximated by neglecting the effects of oxidation,
cold work, and irradiation. Young’s modulus is given by

E  =  1.088 x 1011 - 5.475 x 107 T (4.11-23)

for T  <  1,090 K (α phase) and

E   =   max (1.0 x 1010Pa, 9.21 x 1010 -  4.05 x 107 T) (4.11-24)

for T  > 1,240 K (β phase), where T is the cladding temperature (K). In the α to β phase transfer zone,
1,090 K  <  T  <  1,240 K, Young’s modulus is given by

E  =  4.912 x 1010 -  4.827 x 107 (T - 1,090 K) . (4.11-25)

4.11.1  References

4.11-1. L. J. Siefken et al., FRAP-T6: A Computer Code for the Transient Analysis of Oxide Fuel Rods,
EGG-CDAP-5410, Idaho National Engineering Laboratory, April 1981.

4.11-2. A. Ullman, R. Acharya, and D. R. Olander, “Thermal Accommodation Coefficients of Inert
Gases on Stainless Steel and UO2,” Journal of Nuclear Materials, 51, 1974, pp. 277-279.

4.11-3. G. A. Berna et al., FRAPCON-2 Developmental Assessment, NUREG/CR-1949, PNL-3849,
Pacific Northwest Laboratory, July 1981.

4.11-4. D. L. Hagrman, G. A. Reyman, and R. E. Mason, MATPRO-Version 11 (Revision 2), A
Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod
Behavior, NUREG/CR-0479, TREE-1280, Revision 2, Idaho National Engineering Laboratory,
August 1981.

4.12   Radiation Enclosure Model

Several radiation text books (Reference 4.12-1 and Reference 4.12-2) describe the approach used
here to compute the rate of radiation exchange between surfaces. The surfaces that have a line-of-sight or a
reflection path through which they can communicate with each other are in the same enclosure. The
computation method is a lumped-system approximation for gray diffuse surfaces contained in an
enclosure. The assumptions of this method are that:

• The fluid in the enclosure neither emits nor absorbs radiant thermal energy.
4-37 INEEL-EXT-98-00834-V1



ATHENA/2.3
• Reflectance from a surface is neither a function of incident nor reflected direction nor of
radiation frequency.

• Temperature, reflectance, and radiosity are constant over each surface.

The radiosity of a surface is the total radiant energy leaving a surface (i.e., the emitted energy plus
the reflected energy). Mathematically this is written for the i-th surface as

(4.12-1)

where

R = radiosity

ε = emissivity

σ = Stefan-Boltzmann constant

T = temperature

ρ = 1 - ε; reflectivity

Fji = view factor from surface j to surface i.

The net heat flux, Qi, at surface i is the difference between the radiosity for i and the radiosity of all

surfaces times their view factor to surface i, and it is given by

. (4.12-2)

The above two equations can be combined to yield

. (4.12-3)

Thus, the only problem in obtaining the heat flux at surface i is to solve for Ri. Equation (4.12-3)

represents a set of n simultaneous linear algebraic equations, which can be written in a matrix form as

Ri εiσTi
4 ρi RjFji

j 1=

n

∑+=

Qi Ri RjFji
j 1=

n

∑–=

Qi
εi

ρi
---- σTi

4 Ri–( )=
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(4.12−4)

where the Kronecker delta is defined as

δij  =  0     

δij  =  1     i = j.

The solution of Equation (4.12-4) involves a matrix inversion written as

. (4.12-5)

Fortunately, the matrix inversion need only be performed once during initialization since it does not
involve variables that change with time.

Radiation changes the heat conduction solution boundary condition [Equation (4.12-3)] at surface i
to the form

(4.12-6)

where

k = surface conductivity

n = unit normal vextor away from the boundary surface

h = convective heat transfer coefficient

Tsk = sink temperature

Qi = net heat flux at surface i [Equation (4.12-3)].

Note that the radiation term is not implicit in surface temperature. This can cause solution
instabilities for thin surfaces and large time steps unless convection dominates radiation.

The tedious part of performing a radiation calculation in an enclosure with surfaces having arbitrary
shapes is finding the view factors. Text books describe integral, graphical, and mechanical methods of
doing this. For many types of surfaces, formulas, tables, or charts are available. Naturally, the view factors
from each surface to all other surfaces must sum to 1. Also, to conserve energy, the area of surface i times

δij ρiFji–( )Ri εiσTi
4=

i j≠

Ri δij ρiFji–( ) 1– εiσTi
4=

 k∂T
∂n
------

i

– hi Ti Tsk–( ) Qi+=
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the view factor for each surface i to any other surface j must equal the area of surface j times the view
factor from j to i. These two restrictions are written as

(4.12-7)

Ai Fij  =  Aj Fji . (4.12-8)

The latter restriction is known as the reciprocity rule. ATHENA has a built in check that if the above
two equations are not satisfied within a relative error of 0.001, a message is printed and the calculation will
not go beyond input checking, because energy conservation errors will be too large.

4.12.1  References

4.12-1. T. J. Love, Radiative Heat Transfer, Columbus, OH: Merrill, 1968.

4.12-2. E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Belmont, CA: Brooks-Cole, 1966.

4.13  Conduction Enclosure Model

The ATHENA conduction enclosure model is an adaptation of the thermal radiation model described
in Section 4.12. The model can be used to simulate multidimensional heat conduction in a lumped
parameter fashion. As is the case with the radiation enclosure model, the conduction enclosure model
permits thermal “connections” between an arbitrary number of heat structures. The only difference is the

nature of the connection. In the conduction enclosure model, a gap conductance (κ) is used to characterize
the thermal connection between heat structures. This represents the ability to transfer heat via physical
contact between heat structure surfaces. Consider the surface node i of a heat structure  thermally coupled
to the surfaces of a set of M other heat structures. The conduction enclosure surface heat flux is given by

(4.13-1)

where

κim = gap conductance between adjacent surfaces of heat structures i and m

Fim = fraction of surface area (area factor) of heat structure i in contact with heat

structure m

Ti = temperature of surface node of heat structure i.

Fij
i 1=

n

∑ 1.0=

Qi
n 1+ κimFim Ti

n Tm
n–( )

m 1=

M

∑= m i≠[ ]
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The solution for the surface heat fluxes is carried out in the same fashion as the surface-to-surface
radiation enclosure model. Input data cards for the model are also shared with the surface-to-surface

radiation enclosure  model. The model has been used for an RBMK reactor application4.13-1. 

The conduction enclosure model does not require the area factors from a surface to all other surfaces
to sum to 1. However, to conserve energy, the area of surface i times the area factor for surface i to any
other surface m must equal the area of surface m times the area factor from m to i. This reciprosity rule has
a built in check so that if the rule is not satisfied to within a relative error of 0.001, a message is printed and
the calculation will not go beyond input chacking, because energy conservation errors will be too large.

4.13.1  References

4.13-1. S. Paik, “RELAP5-3D Multidimensional Heat Conduction Enclosure Model for RBMK Reactor
Applications,” Nuclear Technology, 128, 1999, pp. 87-102.

4.14  Metal-Water Reaction Model

The reaction of zirconium and steam is treated using the correlation developed by Cathcart.4.14-1 The
metal-water reaction model is coupled with the fuel rod deformation model so that if a rod ruptures, the
inside of the cladding can react. The metal-water reaction heat source term for the cladding surface mesh
point is added into the total heat source term for the heat structure.

The metal-water reaction model calculates the thickness of the cladding annulus converted to oxide;
however, it does not alter the thermal-physical properties of the cladding as the oxide layers develop.
Similarly, although the model calculates the amount of hydrogen freed from each surface undergoing
metal-water reaction, this hydrogen does not get included into the ATHENA hydraulic equations, nor does
the steam being consumed by the metal-water reaction get withdrawn from the hydraulic equations.

The metal-water reaction assumes there is always sufficient steam to allow the reaction to proceed.
The model does not recognize the possibility of a reduced reaction rate due to insufficient available steam.
The model does, however, recognize that the reaction is limited by the amount of cladding available. When
all the cladding for a heat structure has been consumed the model terminates the metal-water reaction for
that heat structure.

The chemical equation being modeled is

Zr + 2H2O → ZrO2 + 2H2 + 5.94 x 108 J/(kg-mole) . (4.14-1)

The thickness of the cladding annulus converted to oxide at time-point n is given by
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(4.14-2)

where

drn = thickness of the cladding annulus converted to oxide at time-point n (m)

drn-1 = thickness of the cladding annulus converted to oxide at time-point n-1 (m)

K = 2.252 x 10-6 m2/s

∆t = time step size (tn+1 - tn) (s)

A = 35,889 mole/cal

R = 1.987 cal/(K-mole)

T = cladding temperature (K).

The amount of heat added to the cladding’s outer surface between time-point n and n-1 is given by
multiplying the volume of cladding undergoing reaction by the density of zirconium and the reaction heat
release, and it is given by

(4.14-3)

where

Q = heat addition per unit length (J/m)

ρ = density of zirconium = 6,500 kg/m3

ro = cladding outer radius (m)

H = reaction heat release = 5.94 x 108 J/(kg-mole)

W = molecular weight of zirconium = 91.22 kg/(kg-mole).

Similar equations are used for the cladding’s inner surface if cladding rupture occurs.

The total hydrogen mass generated by the metal-water reaction is calculated by multiplying the mass
of zirconium reacted by the ratio of the molecular weight of 4 hydrogen atoms to 1 zirconium atom.

drn drn 1–
2 K∆t( )exp  A

RT
--------– 

 +

1
2
---

=

Q ρπ ro drn 1––( )2 ro drn–( )2–[ ] H
W
-----=
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4.14.1  Reference

4.14-1. J. V. Cathcart et al., Reaction Rate Studies, IV, Zirconium Metal-Water Oxidation Kinetics,
ORNL/NUREG-17, Oak Ridge National Laboratory, August 1977.

4.15  Cladding Deformation Model

An empirical cladding deformation model from FRAP-T64.15-1 has been incorporated into
ATHENA. The model may be invoked only in conjunction with the dynamic gap conductance model. The
purpose of the model is to allow plastic deformation of the cladding to be accounted for in the calculation
of fuel rod’s cladding temperature during LOCA simulations; and to inform a user of the possible
occurrence of rod rupture and flow blockage and hence the necessity of conducting more detailed
simulations of the fuel rods’ behavior.

With the deformation model modifications, an additional term is included in the gap conductance
[Equation (4.11-1)] to account for radiation across the gap

(4.15-1)

(4.15-2)

where

hr = radiation gap conductance

σ = Stefan-Boltzmann constant = 5.67 x 10-8 W/(m2 K4)

F = emissivity factor

εf = emissivity of fuel

εc = emissivity of cladding

Rf = outer radius of fuel (m)

Rc = inner radius of cladding (m)

Tf = temperature of fuel’s outer surface (K)

hr σF Tf
2 Tc

2+( ) Tf Tc+( )=

F 1

1
εf
----

Rf

Rc
----- 

  1
εc 1–( )

------------------+
 
 
 
-----------------------------------------------------=
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Tc = temperature of cladding’s inner surface (K).

When the deformation model is active, the total cladding strain used in the gap conductance model is
the sum of the thermal strain, the creepdown strain, the elastic strain, and the plastic strain. The cladding
thermal strain, creepdown strain, and elastic strain are given in Section 4.11. The plastic strain is given by

εp  =  0.25 εrup exp [-0.0153(Tr - Tc)] (4.15-3)

where

εp = plastic hoop strain before rupture

εrup = cladding strain at rupture

Tr = rupture temperature (oC)

Tc = average cladding temperature ( oC).

The rupture temperature is

(4.15-4)

where

S = cladding hoop stress (KPSI)

H = max [(heating rate)/(28 oC/s), 1.0].

The rupture temperature correlation is depicted in Figure 4.15-1.

Plastic strain is calculated only if the average cladding temperature exceeds Tplas, the temperature at

which plastic strain begins

Tplas  =  Tr - 70°C                        ;            Tr < 700 °C

         =  Tr - 70 °C - 0.14 (Tr-700 °C);  700 °C < Tr < 1,300 °C

                   =  Tr - 155 °C                      ; 1,300 °C < Tr (4.15-5)

Tr 3 960 °C, 20.4 S•
1 H+

------------------- 
 – 8.51 6×10 S

100 1 H+( ) 2 790, S•+
----------------------------------------------------------–=
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If the average cladding temperature exceeds the value of Tplas, then the rupture temperature is used

together with the heating rate to determine the rupture strain Erup, via a table lookup. When rupture occurs,

a similar table lookup is used to obtain the flow blockage. The rupture strain and blockage tables are from

Reference 4.15-2. The correlations used for cladding strain and rupture are given in Table 4.15-1 and

illustrated in Figure 4.15-2 through Figure 4.15-4. Linear interpolation is used between 10 °C/s and 25 °
C/s .

Figure 4.15-1 ORNL correlation of rupture temperature as a function of engineering hoop stress and 
temperature-ramp rate with data from internally heated zircaloy cladding in aqueous atmospheres.

Table 4.15-1 Tabulation of cladding correlations.

Slow-ramp correlations Fast-ramp correlations

Rupture 
temperature 

(°C)

Burst strain
(%)

Flow blockage
(%)

Burst strain
(%)

Flow blockage 
(%)

600 10 6.5 10 6.5

625 11 7.0 10 6.5
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Engineering hoop stress (KPSI)
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800
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1,200

T
em
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 (
o C

)

0 °C/s
14 °C/s

28 °C/s

10 °C/s≤( ) 25 °C/s≥( )
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If a fuel rod ruptures (i.e., one of the heat structure segments ruptures in one of the heat structure
geometries connected to a fluid volume), the rod’s (i.e., the heat structure geometry’s) internal gap

650 13 8.4 12 7.5

675 20 13.8 15 10.0

700 45 33.5 20 13.8

725 67 52.5 28 20.0

750 82 65.8 38 27.5

775 89 71.0 48 35.7

800 90 71.5 57 43.3

825 89 71.0 60 46.0

850 82 65.8 60 46.0

875 67 52.5 57 43.3

900 48 35.7 45 33.5

925 28 20.0 28 20.0

950 25 18.0 25 18.0

975 28 20.0 28 20.0

1,000 33 24.1 35 25.7

1,025 35 25.7 48 35.7

1,050 33 24.1 77 61.6

1,075 25 18.0 80 64.5

1,100 14 9.2 77 61.6

1,125 11 7.0 39 28.5

1,150 10 6.5 26 18.3

1,175 10 6.5 26 18.3

1,200 10 6.5 36 26.2

Table 4.15-1 Tabulation of cladding correlations. (Continued)

Slow-ramp correlations Fast-ramp correlations

Rupture 
temperature 

(°C)

Burst strain
(%)

Flow blockage
(%)

Burst strain
(%)

Flow blockage 
(%)

10 °C/s≤( ) 25 °C/s≥( )
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Figure 4.15-2 Maximum circumferential strain as a function of rupture temperature for internally heated 
zircaloy cladding in aqueous atmospheres at heating rates less than or equal to 10 °C/s.

Figure 4.15-3 Maximum circumferential strain as a function of rupture temperature for internally heated 
zircaloy cladding in aqueous atmospheres at heating rates greater than or equal to 25 °C/s.
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pressure is set equal to the external fluid volume’s pressure; metal-water reaction is initiated on the inner
surface of the cladding for the structure where rupture occurs if the metal-water reaction model is active;
and additional form loss coefficients are (optionally) computed for the junctions just below and just above
the rupture location. They are

Ke  =  (1-B)2, expansion loss coefficient (4.15-6)

Kc  =  0.45(1-B), contraction loss coefficient (4.15-7)

B  =  (flow area after blockage)/(flow area before blockage) . (4.15-8)

The cladding deformation model also alters other parameters affecting the ATHENA hydraulic

solution. The approach is similar to that used in SCDAP/RELAP5-3D4.15-3. In particular, it alters the flow
area, volume, and volume hydraulic diameter of the fluid cell containing a deformed or ruptured heat
structure.  It also alters the heat transfer hydraulic diameter (heated equivalent diameter) for the volume, as
well as the junction area, the junction hydraulic diameter, and the junction throat ratio connecting the

volumes. The cladding deformation model is shown in Figure 4.15-5, where Ro is the clad outer radius.

Figure 4.15-4 Reduction in PWR assembly flow area as a function of rupture temperature and ramp.
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 The cladding deformation model is restricted to cylindrical geometry. The model uses the feature

that the time step (∆t) for advancing the hydrodynamics may be different than the time step (∆tht) for

advancing the heat structures. The new time hydrodynamic flow area of the volume (An+1) is calculated by 

(4.15-9)

The change of the hydrodynamic flow area (∆A) is determined as follows:

1. If the cladding swells, the change of area is calculated by

(4.15-10)

where  is the length of the j-th heat structure segment of the fuel rod and Lh is the length of the

volume. The last two terms in the preceding equation deserve explanation. The time step ratio term
∆t/∆tht serves to extrapolate the clad deformation that occurred during the last heat transfer

advancement time step, ∆tht, into the future hydrodynamic advancements, ∆t, that are smaller than

∆tht, In other words, the assumption is made that the rate of deformation will remain constant

whenever there are multiple hydrodynamic time steps between each heat transfer advancement.

Figure 4.15-5 Cladding deformation model
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An 1+ An ∆A–=
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--------   ,⋅ ⋅=

Lhtj
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The length ratio   serves the following purposes: (1) for a volume representing a core

volume with fuel pins, it represents the number of pins; (b) it limits the area change in those
instances in which there are multiple heat structures stacked on one another in a volume; (c) it
limits the area change in those instances in which the heat structure length is less than the volume
length.

2. If the cladding ruptures, the change of area is calculated by

(4.15-11)

where variable B is defined by Equation (4.15-8) and N is the number of heat structure segments
attached to the volume (either stacked on one another in the same heat strucrure geometry or in
separate heat structure geometries).

The other variables are calculated from the ratio of new and old areas of the volume as

(4.15-12)

(4.15-13)

(4.15-14)

where the variable ratio is

  , (4.15-15)

V is the volume, Dh is the volume hydraulic diameter, and Dhe is the volume heat transfer hydraulic

diameter (heated equivalent diameter). The junction area, junction hydraulic diameter, and junction throat
ratio are also changed accordingly.

The geometric changes in a heat structure experiencing plastic deformation are not coupled to the
geometry seen by the heat structures heat conduction solution. The geometry changes enter the conduction
solution only by affecting the value being calculated for gap conductance.

Lhtj
Lh⁄

∆A An 1 B–( ) ∆t
∆tht
---------   

Lhtj

Lhti

i 1=

N

∑
----------------=

Vn 1+ Vn ratio⋅=

Dh
n 1+ Dh

n ratio⋅=

Dhe
n 1+ Dhe

n ratio⋅=

ratio An 1+

An
------------=
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When the reflood fine mesh rezoning algorithm is active, the deformation model sees only the coarse
zones. Deformation calculations are not done for each of the fine mesh points in a axial set of heat
structures. Rather, the deformation calculation is done once for each of the axial heat structures and all of
the fine mesh nodes within a particular heat structure having the same gap conductance value.

4.15.1  References

4.15-1. S. C. Resch et al., FRAP-T6: The Transient Fuel Rod Behavior Code, NUREG/CR-2950, Idaho
National Engineering Laboratory, September 1982.

4.15-2. D. A. Powers and R. O. Meyer, Cladding Swelling and Rupture Models for LOCA Analysis,
NUREG-0630, U. S. Nuclear Regulatory Commission, April 1980.

4.15-3. The SCDAP/RELAP5-3D© Development Team, SCDAP/RELAP5-3D© Code Manual,
INEEL-EXT-02-00589, Idaho National Engineering and Environmental Laboratory, Rev. 2.2,
October 2003.
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5  Trip System

The trip system consists of the evaluation of logical statements. Each trip statement is a simple
logical statement that has a true or false result and an associated variable, TIMEOF. The TIMEOF variable
is -1.0 whenever the trip is false, and contains the time the trip was last set true whenever the trip is true.
Linear interpolation, along with limits, between the current time step and the previous time step, is used to
obtain a more accurate time when the trip was last set true. This variable allows for time delays and unit
step functions based on events during the transient.

Within the structure of ATHENA, the trip system is considered to be only the evaluation of the
logical statements. The decision of what action is needed, based on trip status, resides within other models.
For example, valve models are provided that open or close the valve based on trip values; pump models
test trip status to determine whether a pump electrical breaker has tripped.

Two types of trip statements are provided--variable and logical trips. Since logical trips involve
variable trips and other logical trips, complex logical expressions can be constructed from simple logical
statements. Both types of trips can be latched or unlatched. A latched trip, once set true, is no longer tested
and remains true for the remainder of the problem or until reset at a restart. An unlatched trip is evaluated
every time step.

5.1  Variable Trips

A variable trip evaluates the statement

Tri  =  V1 OP (V2 + C) . (5.1-1)

The value Tri is the i-th trip variable that may be true or false. Values V1 and V2 are quantities from

the heat structures, hydrodynamics, reactor kinetics, control systems, or may be a TIMEOF quantity. The
value C is a constant. The operation OP is one of the following arithmetic relational operations: EQ is
equal, NE is not equal, GT is greater than, GE is greater than or equal, LT is less than, and LE is less than
or equal.

Trips are evaluated at the beginning of the overall ATHENA time advancement and are evaluated in
numerical order. Except for TIMEOF variables, all other V quantities have beginning of time step values;
and the results of the trip evaluation are independent of the evaluation order. But when a variable trip
statement references TIMEOF (Trk), the new value of TIMEOF is used if k < i. When a variable trip

statement references a TIMEOF variable whose value is -1.0 (i.e., the trip is false), the evaluation of the
variable trip is bypassed. Thus, the value of the variable trip remains the same as its value on the previous
time step.
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5.2  Logical Trips

A logical trip evaluates

Tri  =  + Trj OP + Trl . (5.2-1)

The values Trj and Trl are variable or logical trips, and the minus sign, if present, denotes the

complement of the trip value. The operation OP is one of the logical operations AND, OR (inclusive or), or
XOR (exclusive or).

Logical trips are evaluated following the evaluation of variable trips and are evaluated in numerical
order. When Trj (or Trl) is a variable trip, new trip values are used; when Trj is a logical trip used in logical

trip expression i, new values are used when j < i and old values are used when j > i.
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6  Control System

The control system provides the capability to evaluate simultaneous algebraic and ordinary
differential equations. The capability is primarily intended to simulate control systems typically used in
hydrodynamic systems, but it can also model other phenomena described by algebraic and ordinary
differential equations (see Section 8.4.5 for a description of special controllers for use in steady-state
initialization). Another use is to define auxiliary output quantities, such as differential pressures, so they
can be printed in major and minor edits and be plotted.

The control system consists of several types of control components. Each component defines a
control variable as a specific function of time-advanced quantities. The time-advanced quantities include
hydrodynamic volume, junction, pump, valve, heat structure, reactor kinetics, trip quantities, and the
control variables themselves (including the control variable being defined). This permits control variables
to be developed from components that perform simple, basic operations.

In the following equations that define the control components and associated numerical techniques,
Yi is the control variable defined by the i-th control component, Aj, R, and S are real constants input by the

user, I is an integer constant input by the user, Vj is a quantity advanced in time by ATHENA and can

include Yi, t is time, and s is the Laplace transform variable. Superscripts involving the index n denote time

levels. The name in parentheses to the right of the definition is used in input data to specify the component.

6.1  Arithmetic Control Components

6.1.1  Constant

Yi  =  S           (CONSTANT) . (6.1-1)

6.1.2  Addition-Subtraction

Y  =  S (A0 + A1V1 + A2V2 + ...)           (SUM) . (6.1-2)

6.1.3  Multiplication

Yi  =  S V1 V2 ...           (MULT) . (6.1-3)

6.1.4  Division

Yi  =   or Yi  =             (DIV) . (6.1-4)S
V1
------

SV2

V1
----------
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6.1.5  Exponentiation

           (POWERI) (6.1-5)

           (POWERR) (6.1-6)

           (POWERX) . (6.1-7)

6.1.6  Table Lookup Function

Yi  =  S F(V1)           (FUNCTION) (6.1-8)

where F is a function defined by table lookup and interpolation.

6.1.7  Standard Functions

Y  =  S F(V1, V2, V3, ...)           (STDFNCTN) (6.1-9)

where F can be |V1|, exp(V1), ln(V1), sin(V1), cos(V1), tan(V1), tan-1(V1), (V1)1/2, MAX(V1, V2, V3, ...),

and MIN(V1, V2, V3, ...). Only MAX and MIN may have multiple arguments and must have at least two

arguments.

6.1.8  Delay

Yi  =  S V1(t - td)           (DELAY) (6.1-10)

where td is the delay time. A user-input, h, determines the number of pairs of data used to store past values

of V1. The maximum number of time-function pairs is h + 2. The delay table time increment is . The

delayed function is obtained by linear interpolation using the stored past history. As time is advanced, new
time values are added to the table. Once the table fills, new values replace values that are older than the
delay time.

6.1.9  Unit Trip

Yi  =  SU (+ tr)           (TRIPUNIT) . (6.1-11)

Yi SV1
I=

Yi SV1
R=

Yi SV1
V2=

td

h
---
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6.1.10  Trip Delay

Yi  =  STr (tr)           (TRIPDLAY) . (6.1-12)

In the above two trip-related components, tr is a trip number and, if negative (TRIPUNIT only),

indicates that the complement of the trip is to be used; U is 0.0 or 1.0, depending on trip tr (or its

complement if tr is negative) being false or true; and Tr is -1.0 if the trip is false and the time the trip was

last set true if the trip is true.

No numerical approximations are involved in evaluating the algebraic components. Evaluation is by
simply performing the indicated operations. In the sequence of operations that perform a time
advancement of the trip, heat conduction, hydrodynamic, reactor kinetic, and control systems of
ATHENA, the control system is processed last. Thus, the end of time step (n + 1) values for trip variables
tr and all V1 variables except control variables Yi are available. The control components are evaluated in

component number order. As the first control variable Y1 is being evaluated, only old-time values are

available for all control component variables. Once Y1 is evaluated, the new-time value for Y1 is available

for the remaining control variable evaluations of Yi. In general, while Yi is being evaluated, new-time

values are available for Yk, k < i, and only old-time values are available for Yk, k > i.

In the example,

(6.1-13)

T and P, which represent a temperature and pressure from the heat structure or hydrodynamic systems, are
new-time values. The value Y8 is also a new-time value because it was advanced before control component

10, and Y10 and Y15 are old-time values.

Initialization of the algebraic control components is very similar to a time advancement. At the start
of control component initialization, all other time-advanced quantities have been initialized. Control
component input includes an initial value and a flag that indicates if initialization is to be performed. The
initialization proceeds in the order of component numbers. The initial value entered becomes the initial
value if no initialization is specified. If initialization is specified, it is simply the specified computation
using the available data. If component i references Yk, k < i, the initialized value of Yk is used; if k > i, the

entered initial value is used.

6.2  Integration Control Component

The integration component evaluates

Y10
n 1+ A0 A1Tn 1+ A2Pn 1+ A3Y8

n 1+ A4Y10
n A5Y15

n+ + + + +=
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            (INTEGRAL) (6.2-1)

where t1 is the simulation time when the component is added to the system, and the initial value at t1 is the

input item regardless of the initialization flag.

The integral is advanced by trapezoidal approximation,

. (6.2-2)

Both new-time (n+1) and old-time (n) values are available for V1 except when it is a control variable

Yk, k > i. For the case when V1 = Yk, k > i, the Vn and Vn+1 are instead Vn-1 and Vn. Use of the integral

component when old-time values will be used should be avoided. Consider the example

a  =  P1 - P2 - Bv - kd (6.2-3)

v  =  ∫ a dt (6.2-4)

d  = ∫ v dt . (6.2-5)

This acceleration-velocity-distance system cannot be advanced without use of old values. As a
general rule, it is considered better to use the old value in the algebraic expression and not in the integral
expressions.

Thus, using Y1 = a, Y2 = v, and Y3 = d,

Y1  =  P1 - P2 - BY2 - kY3 (6.2-6)

Y2  =  INTEGRAL (Y1) (6.2-7)

Y3  =  INTEGRAL (Y2) . (6.2-8)

6.3  Differentiation Control Components

Two components provide for differentiation

Yi S V1dt
t1

t

∫=

Y1
n 1+ Y1

n S V1
n V1

n 1++[ ]∆t
2
-----+=
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. (6.3-1)

One component evaluates the derivative by the inverse of the integration technique,

           (DIFFERNI) . (6.3-2)

This component is not recommended, since it can be unstable, requires an accurate initial value, and
does not recover from a bad initial value. Deletion of this component is being considered. The
recommended derivative component uses a simple difference expression,

           (DIFFERND) . (6.3-3)

Differentiation is a noisy process and should be avoided. Differentiation of control system variables
can almost always be avoided. Filtering the result of differentiation of other variables should be
considered. Similar to the case of the integral component, old-time values are used when advancement of
Yi involves V1 = Yk, k > i.

6.4  Proportional-Integral Component

This component evaluates

           (PROP-INT) (6.4-1)

or, in Laplace transform notation,

. (6.4-2)

This component is advanced in time by

(6.4-3)

Yi
dV1

dt
---------=

Yi
2S
∆t
------ V1

n 1+ V1
n–( ) Yi

n–=

Yi S V1
n 1+ V1

n–( )
∆t

-----------------------------=

Yi S A1V1 A2 V1dt
t1

t

∫+
 
 
 

=

Yi s( ) S A1
A2

s
------+ 

  V1 s( )=

In 1+ In V1
n V1

n 1++( )∆t
2
-----+=
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. (6.4-4)

The comments in the previous section concerning integration with V1 = Yk hold for this component.

If the initialization control flag is off, Y° is the entered initial value and

. (6.4-5)

If the initialization control flag is on,

(6.4-6)

. (6.4-7)

6.5  Lag Control Component

The lag component is defined in Laplace transform notation as

           (LAG) . (6.5-1)

Through algebraic rearrangement,

Yi(s) + A1sYi(s) = S V1(s) (6.5-2)

(6.5-3)

. (6.5-4)

Transforming to the time domain gives

. (6.5-5)

Yi
n 1+ S A1V1

n 1+ A2In 1++( )=

I° 1
A2
------

Yi
°

S
------ A1V1

°– 
 =

I° 0=

Yi
° SA1V1

°=

Yi s( ) S 1
1 A1s+
------------------ 

  V1 s( )=

Yi s( )
s

------------- A1Yi s( )+
SV1 s( )

s
-----------------=

Yi s( )
SV1 s( ) Yi s( )–

A1s
------------------------------------=

Yi
SV1 Yi–( )dt

A1
--------------------------------

o

t

∫=
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The above expression is advanced numerically by

(6.5-6)

or

. (6.5-7)

If the initialization control flag is off or on,

. (6.5-8)

6.6  Lead-Lag Control Component

The lead-lag component is defined in Laplace transform notation as

           (LEAD-LAG) . (6.6-1)

Rearranging algebraically, this yields

Yi(s) + A2sYi(s) = SV1(s) + A1s SV1(s) (6.6-2)

or

. (6.6-3)

Transforming to the time domain gives

. (6.6-4)

Yi
n 1+ Yi

n S V1
n V1

n 1++( ) Yi
n Yi

n 1+––[ ] ∆t
2A1
---------+=

Yi
n 1+

Yi
n 1 ∆t

2A1
---------– 

  S V1
n V1

n 1++( ) ∆t
2A1
---------+

1 ∆t
2A1
---------+

----------------------------------------------------------------------------------=

Yi
° SV1

°=

Yi s( ) S 1 A1s+
1 A2s+
------------------ 

  V1 s( )=

Yi s( )
A1SV1 s( )

A2
------------------------

SV1 s( ) Yi s( )–
A2s

------------------------------------+=

Yi
A1SV1

A2
----------------

SV1 Yi–
A2

---------------------dt 
 

o

t

∫+=
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Note that the differentiation implied by the sV1(s) term has been avoided. The above expression is

advanced numerically by

(6.6-5)

or

(6.6-6)

and finally

. (6.6-7)

If the initialization control flag is off, then  = 0 and  is the entered initial value. If the

initialization control flag is on, then

. (6.6-8)

For both lag and lead-lag components, if V1 = Yk: k = i is an error; when k < i, old and new values

are used as indicated; if k > i,  and  are really  and .

6.7  Shaft Component

The shaft component is a special control component that advances the rotational velocity,

            (SHAFT) (6.7-1)

where Ii is the moment of inertia from component i, τi is the torque from component i, fi is the friction from

component i, and τc is an optional torque from a control component. The summations are over the pump,

Yi
n 1+ A1

A2
------SV1

n 1+ In S V1
n V1

n 1++( ) Yi
n– Yi

n 1+–[ ] ∆t
2A2
---------+ +=

Yi
n 1+

A1

A2
------SV1

n 1+ In S V1
n V1

n 1++( ) Y1
n–[ ] ∆t

2A2
---------+ +

1 ∆t
2A2
---------+

-----------------------------------------------------------------------------------------------------=

In 1+ In S V1
n V1

n 1++( ) Yi
n– Yi

n 1+–[ ] ∆t
2A2
---------+=

I0 Yi
0

Yi
0 SVi

0=

I0 1 A1

A2
------– 

  SVi
0=

V1
n V1

n 1+ Yk
n 1– Yk

n

Ii
dω
dt
-------

i
∑ τi fiω τc+

i
∑–

i
∑=
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generator, motor, or turbine components that are connected to the shaft and the shaft itself. The shaft and
each associated component contains its own model, data, and storage for inertia, friction, and torque and
has storage for its rotational velocity. Each associated component also has a disconnect trip number. If zero
(no trip), the component is always connected to the shaft. If a trip is specified, the component is connected
when false and disconnected when true. Any disconnected component is advanced separately and thus can
have a different rotational velocity than the shaft. All connected components have the same rotational
velocity.

The shaft equation is advanced explicitly by

. (6.7-2)

Inertias, torques, and frictions are evaluated using old-time information. The torque from the control

system, τc, would be in terms of new-time values for quantities other than control variables and would use

new or old-time values for control variables depending on their component numbers relative to the shaft
component number. Except when a generator component is involved, the shaft component calculations

consist of solving Equation (6.7-2) for ωn+1 separately for each component disconnected from the shaft (if
any) and for the shaft and the connected components as one system. For separated components, the new
rotational velocity is stored with the component data, and the summations are only over terms within the
component. For the shaft and the connected components, the summations are over the shaft and the
connected components; and the new rotational velocity is stored as the shaft’s and each connected
component’s rotational velocity. A tripped generator, attached or connected, is treated as described above.
An untripped generator rotates at the input synchronous speed; and, if connected to the shaft, the shaft and
all connected components are forced to the synchronous speed.

6.8  Inverse Kinetics Component

The inverse kinetics component solves the point reactor kinetics equations for the reactivity rather
than for the neutron density. 

                  (INVKIN) (6.8-1)

where

Ii
n ωn 1+ ωn–( )

∆t
-----------------------------

i
∑ τi

n fi
nωn τc+

i
∑–

i
∑=

Y S

Λ
β
----

dV1

dt
--------- 

  Di to ∆t+( )
i 1=

Nd

∑+

V1
-------------------------------------------------------------

 
 
 
 
 
 

=
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(6.8-2)

The input to the inverse kinetics control block should be the total fission power computed by the
point kinetics model, the total fission power computed by the nodal neutron kinetics model, the fission
power in one of the nodal neutron kinetics zones, or the response of a neutron detector that senses the
neutron flux computed by either of the two neutron kinetics models. 

The inverse kinetics reactivity algorithm utilizes a finite differencing procedure to compute reactivity
based upon the time rate of change of the delayed neutron precursor concentration and the neutron density

in the point reactor kinetics equations. Equation (7.1-1) is solved for ρ, where it is assumed that the neutron
source S is zero.

. (6.8-3)

The terms in Equation (6.8-3) are defined in Section 7.1. Substituting Equation (7.1-2) into Equation
(6.8-3) gives

. (6.8-4)

Next, the variable Di is defined as

. (6.8-5)

Substituting Di into Equation (6.8-4) gives

(6.8-6)

The equation for Di is derived by differentiating Equation (7.1-2) with respect to time and

eliminating the delayed neutron precursor concentration using Equation (6.8-5) to obtain

Di to ∆t+( ) e λi∆ t– Di to( )
βi

βλi
-------- 1 e λi∆ t–

–( )
dV1

dt
---------+=

ρ Λ
n
----

td
dn β

Λ
----n λiCi

i 1=

Nd

∑–+
 
 
 

=

ρ Λ
n
----

td
dn dCi

dt
--------

i 1=

Nd

∑+
 
 
 

=

Di
Λ
β
----

dCi

dt
--------=

ρ Λ
n
----dn

dt
------ β

n
--- Di

i 1=

Nd

∑+=
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. (6.8-7)

Assuming that the neutron density n varies linearly over a time step interval (i.e.,  is constant), Equation

(6.8-7) can be integrated over the time step interval ∆t using standard methods (i.e., Laplace transforms) to
give,

(6.8-8)

where  is the time at the beginning of the time step interval.

Evaluating Equation (6.8-6) at the end of the time step interval and dividing by β to convert the units of
reactivity into dollars, we obtain

(6.8-9)

where the derivative of the neutron density with respect to time is given by

(6.8-10)

For this control component, the output Y is the reactivity ρ(to + dt)/β computed from Equation

(6.8-9) where the neutron density n in Equation (6.8-9) is replaced by the control block input V1.

dDi

dt
-------- λiDi+

βi

β
----dn

dt
------=

dn
dt
------

Di to ∆t+( ) e λi∆ t– Di to( )
βi

βλi
-------- 1 e λi∆ t–

–( )dn
dt
------+=

to

ρ to ∆t+( )
β

------------------------ Λ
βn to ∆t+( )
--------------------------- dn

dt
------ 

 

to

to ∆t+
1

n to ∆t+( )
------------------------ Di to ∆t+( )

i 1=

Nd

∑+=

dn
dt
------ 

 

to

to ∆t+
n to ∆t+( ) n to( )–

∆t
------------------------------------------=
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7   Reactor Kinetics Model

There is one option for the computation of the reactor power in the ATHENA code. The  option is the

point reactor kinetics model based on the IREKIN7.0-1 program developed at the INEEL [previously called
NRTS (National Reactor Testing Station)]; this option was implemented in previous versions of RELAP5. 

7.0.1  References

7.0-1. R. J. Wagner, IREKIN -- Program for the Numerical Solution of the Reactor Kinetics Equations,
IDO-17114, National Reactor Testing Station, January 1966.

7.1  Point Reactor Kinetics Model

The point reactor kinetics model in the ATHENA code is the simplest model that can be used to
compute the transient behavior of the neutron fission power in a nuclear reactor. The model is based ion

the IREKIN7.1-1 program developed at the INEEL (previously call the NRTS). The power is computed
using the space-independent or point kinetics approximation which assumes that power can be separated
into space and time functions. This approximation is adequate for cases in which the space distribution
remains nearly constant.

The point reactor kinetics model computes both the immediate (prompt and delayed neutrons) fission
power and the power from decay of fission products. The immediate (prompt and delayed neutrons) power
is that released at the time of fission and includes power from kinetic energy of the fission products and
neutron moderation. Decay power is generated as the fission products undergo radioactive decay. The user
can select the decay power model based on either the ATHENA approximate implementation of the 1973

ANS Proposed Standard7.1-2,  the ATHENA exact implementation of the 1979 ANSI/ANS

Standard,7.1-3,7.1-4,7.1-5 or the ATHENA exact implemetation of the 1994 ANSI/ANS Standard7.1-6.

7.1.1   Point Reactor Kinetics Equations

The point kinetics equations are (see Glasstone and Sesonske7.1-7)

(7.1-1)

(7.1-2)

(7.1-3)

dn t( )
dt

------------- ρ t( )  β–[ ]
Λ

-----------------------n t( ) λiCi t( )
i 1=

Nd

∑ S+ +=

dCi t( )
dt

---------------
βfi

Λ
------n t( )  λiCi t( ) i– 1 2 … Nd, , ,= =

ϕ t( ) n t( )v=
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(7.1-4)

Pf(t)  =  Qfψ(t) (7.1-5)

where

t = time (s)

n = neutron density (neutrons/m3)

ϕ = neutron flux (neutrons/m2·s)

v = neutron velocity (m/s)

Ci =  delayed neutron precursor concentration in group i (nuclei/m3)

β = effective delayed neutron fraction

=

Λ = prompt neutron generation time (s)

ρ = reactivity (only the time-dependence has been indicated; however, the
reactivity is dependent on other variables)

fi = fraction of delayed neutrons of group i

= βi/β

βi = effective delayed neutron precursor yield of group i

λi = decay constant of group i (1/s)

S = source rate density (neutrons/m3·s)

ψ = fission rate (fissions/s)

= macroscopic fission cross-section (1/m)

ψ t( ) VΣfϕ t( )=

βi

i 1=

Nd

∑

Σf
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Pf = immediate (prompt and delayed neutron) fission power (MeV/s)

Qf = immediate (prompt and delayed neutron) fission energy per fission

(MeV/fission).

V = volume (m3).

Nd = number of delayed neutron precursor groups.

7.1.2  Fission Product Decay Model

The 1979 and the 1994 Standards express the power Psα (t) in MeV/s as a function of time t resulting

from one fission of isotope α at t = 0 as

. (7.1-6)

Data are presented for three isotopes, 235U, 238U, and 239Pu for the 1979 Standard. Data are

presented for four isotopes, 235U, 238U, 239Pu, and 241Pu for the 1994 Standard. The parameters a and λ
were obtained by fitting to fission decay power data. The fitting for each isotope used 23 groups (Nα = 23).

The above expression is an impulse response to one fission and can be extended to an arbitrary fission rate

ψα(t) through the convolution integral

(7.1-7)

where the convolution operation is defined by

. (7.1-8)

Since numerical evaluation of convolution integrals is cumbersome, a set of differential equations
equivalent to the convolution integral is derived.

Assume that the power from each group is from radioactive decay of a fission fragment i. Then

  =   =  . (7.1-9)

Psα t( ) aαjexp   λα jt–( )
j 1=

Nα

∑=

Pα t( ) Psα t( )*ψα t( ) aαjexp   λα jt–( )*ψα t( )
j 1=

Nα

∑= =

A t( )*B t( ) A t  τ–( )
0
t

∫ B τ( ) τd A τ( )B t  τ–( ) τd
0
t

∫= =

Pα j t( ) λαjγαj t( ) aαj   λα jt–( )exp
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For simplification in the following derivation, the α and j subscripts are dropped and the following
expressions represent an equation for one group for one isotope. From Equation (7.1-9) we have

. (7.1-10)

Laplace transforming Equation (7.1-10) gives

. (7.1-11)

Rearranging Equation (7.1-11) gives

. (7.1-12)

Transforming to real time yields

(7.1-13)

where δ(0) is the impulse function. Applying a time-dependent fission rate ψ(t) in place of the single
fission (impulse response), Equations (7.1-12) and (7.1-13) become

(7.1-14)

. (7.1-15)

Solution of Equations (7.1-14) or (7.1-15) (remembering that P = λγ) for an impulse yields Equation
(7.1-6) and a similar expression in the 1979 and 1994 Standards. Solution of Equations (7.1-14) or (7.1-15)
for an arbitrary fission source yields Equation (7.1-7). When specifying

(7.1-16)

γ t( ) a
λ
---exp   λt–( )=

γ s( ) a
λ s λ+( )
--------------------=

sγ s( ) a
λ
---   λγ s( )–=

dγ t( )
dt

------------ a
λ
---δ 0( )  λγ t( )–=

sγ s( ) a
λ
---ψ s( )=   λγ s( )–

dγ t( )
dt

------------ a
λ
---ψ t( )  λγ t( )–=

ψ t( )
      1, 0 t T≤ ≤

0, t T>



=
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Equations (7.1-14) and (7.1-15) yield another solution given in the 1979 and 1994 Standards. (Note that
the Standard defines t as starting at 0 after fissioning for T s.)

A physical model can be attached to the terms in Equation (7.1-15). The first term on the right
represents production of the isotope during fission; the last term is the loss of the isotope due to decay. A
more mechanistic model would also provide for production of one isotope due to the decay of another (see
Section 7.1.3).

The 1979 and 1994 Standards for decay power can be implemented by advancing the differential
equations, which become

, (7.1-17)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 Standard,

, (7.1-18)

where NI = 3 for the 1979 Standard and NI = 4 for the 1994 Standard, and where ψ is the fission rate from

all isotopes, Fα is the fraction of fissions from isotope α, and  is the uncorrected decay power.

Summation of Fα over α is 1.0. The value Fγ is a input factor to allow easy specification of a conservative

calculation. It is usually 1.0 for best-estimate calculations, and 1.2 was recommended for a conservative
calculation with the 1973 Proposed Standard. The 1979 and 1994  Standards should allow consistent use of
1.0 for Fγ.

The 1979 and 1994 Standards use a correction factor to the energy from fission product decay to
account for the effects of neutron absorption. Both an equation and a table for the correction factor are
provided. The table is a maximum value for the G factor. The equation is

G(t) = 1.0 + (3.24 . 10-6 + 5.23 . 10-10t) T0.4ψg (7.1-19)

where ψg is the number of fissions per initial fissile atom, T is the reactor operating time including any

periods of shutdown, and t is the time since shutdown. Limits on the quantities are 1.0 < ψg < 3.0, T <

1.2614 . 108 seconds, and t < 104 seconds. The table is used for t > 104. Note that there is a discontinuity in
G(t) when switching from the equation to the table. The standard allows the table to be used in place of the
equation and the code through user input allows the same. The corrected decay power is given by

dγαj t( )
dt

----------------   Fγaαj

λαj
------------Fαψ t( )  λα jγα j t( ) j– 1 2 …, ,= = , Nα

P'γ t( ) λα jγα j t( )
j 1=

Nα

∑
α 1=

NI

∑=

P'γ
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. (7.1-20)

The 1973 Proposed Standard7.1-2 is presented in terms of the Shure7.1-8 curve and tabular data. The

ATHENA implementation of the 1973 Proposed Standard is the same as the RELAP47.1-9 implementation,
where differential equations for one isotope and 11 groups are fitted to the Shure curve (the 1973 Proposed
Standard). The ATHENA and RELAP4 implementations of the 1973 Proposed Standard are within 4% of

the tabular values of the 1973 Proposed Standard. The 1979 Standard7.1-3,7.1-4,7.1-5 lists data for three

isotopes, 235U, 238U, and 239Pu, and uses 23 groups for each isotope. The ATHENA implementation of the

1979 Standard is exact (i.e., not a curve fit). A user option also allows only the 1979 Standard data for 235U

to be used. The 1994 Standard7.1-6 lists data for four isotopes, 235U, 238U, 239Pu, and 241Pu, and uses 23
groups for each isotope. The ATHENA implemetation of the 1994 Standard is exact (i.e., not a curve fit).

A user option also allows only the 1994 Standard data for 235U to be used. The data for all standards are
built into the code as default data, but the user may enter different data.

7.1.3  Actinide Decay Model

The actinide model describes the production of 239U, 239Np, and 239Pu from neutron capture by
238U.

(7.1-21)

(7.1-22)

. (7.1-23)

 The quantity FU is user-specified and is the number of atoms of 239U produced by neutron capture in

238U per fission from all isotopes. A conservative factor if desired should be factored into FU. The λ and η

values can be user-specified, or default values equal to those stated in the 1979 ANS Standard and the 1994
Standard can be used.

The first equation describes the rate of change of atoms of 239U. The first term on the right represents

the production of 239U; the last term is the loss of 239U due to beta decay. The second equation describes

the rate of change of 239Np. The production of 239Np is from the beta decay of 239U, and 239Pu is formed

from the decay of 239Np. Solution of the actinide Equations, (7.1-21) and (7.1-22), for the fission source
given in Equation (7.1-16) yields the result quoted in the 1979 Standard and the 1994 Standard.

Pγ G t( )P'γ=

dγU t( )
dt

--------------- FUψ t( )  λUγU t( )–=

dγN t( )
dt

--------------- λUγU t( )  λNγN t( )–=

Pα t( ) ηUλUγU t( ) ηNλNγN t( )+=
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7.1.4  Transformation of Equations for Solution

The differential equations to be advanced in time are Equations (7.1-1), (7.1-2), (7.1-17), (7.1-21),
and (7.1-22). Multiplying by  and X which is the conversion factor from MeV/s to watts, the equations

become

(7.1-24)

           i = 1, 2, ..., Nd (7.1-25)

(7.1-26)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 Standard,

(7.1-27)

. (7.1-28)

The total power PT is the sum of immediate fission power, corrected fission product decay, and

actinide decay power, and now in units of watts is

(7.1-29)

where NI = 3 for the 1979 Standard and NI = 4 for the 1994 Standard.

For solution convenience, the following substitutions are made:

ρ (t)  =  βr (t) (7.1-30)

(7.1-31)

VΣf

d
dt
----- Xψ t( )

v
--------------- ρ t( ) β–[ ]Xψ t( )

Λv
---------------------------------------- λiXVΣfCi t( )

i 1=

Nd

∑ XVΣfS+ +=

d
dt
----- XΣfCi t( )[ ]

βfiXψ t( )
Λv

----------------------   λiXVΣfCi t( )–=

d
dt
----- Xγα j t( )[ ]

Fγaα jFαXψ t( )
λα j

----------------------------------   λαjXγαj t( )–= j 1 2 ... Nα, , ,=

d
dt
----- XγU t( )[ ] FUXψ t( )  λUXγU t( )–=

d
dt
----- XγN t( )[ ] λUXγU t( )  λNXγN t( )–=

PT t( ) QfXψ t( ) G t( ) λα jXγαj t( )
j 1=

Nα

∑
α 1=

NI

∑ ηUλUXγU t( ) ηNλNXγN t( )+ + +=

Xψ t( ) ψ' t( )=
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(7.1-32)

              i = 1, 2, ..., Nd (7.1-33)

          j = 1, 2, ..., Nα (7.1-34)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 Standard,

(7.1-35)

XγN (t)  =  ZN (t) . (7.1-36)

The equations to be advanced are now

(7.1-37)

                      i = 1, 2, ..., Nd (7.1-38)

                     i = 1, 2, ..., Nd (7.1-39)

where α = 1, 2, 3 for the 1979 standard and α = 1, 2, 3, 4 for the 1994 Standard,

(7.1-40)

(7.1-41)

XVΣfΛvS
β

------------------------- S'=

XVΣfvCi t( )
βfi

Λλi
---------Wi t( )=

Xγαj t( )
Fγaα jFα

λαj
2

------------------Zα j t( )=

XγU t( )
FU

λU
------ZU t( )=

d
dt
-----ψ' t( ) β

Λ
---- r t( ) 1–[ ]ψ' t( ) fiWi t( )

i 1=

Nd

∑ S'+ +
 
 
 

=

d
dt
-----Wi t( ) λiψ' t( )  λiWi t( )–=

d
dt
-----Zαjt λα jψ' t( )  λα jZαj t( )–=

d
dt
-----ZU t( ) λUψ' t( )  λUZU t( )–=

d
dt
-----ZN t( ) FUZU t( )  λNZN t( )–=
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 , (7.1-42)

where NI = 3 for the 1979 Standard and NI = 4 for the 1994 Standard.

These equations are advanced using the modified Runge-Kutta method described in Section 7.1.7.

7.1.5  Initialization

Two initialization options are provided. In both options, the fission rate and delayed neutrons are in
steady-state or equilibrium conditions, that is, their time derivatives are zero. With r(0) an input quantity,

(7.1-43)

. (7.1-44)

The first option assumes that the fission product decay and actinides are also in equilibrium. This is
equivalent to assuming that the reactor has been operating at a constant total power for an infinite period of
time. The initial conditions are

(7.1-45)

where α = 1, 2, 3 for the 1979 Standard and α = 1, 2, 3, 4 for the 1994 Standard,

(7.1-46)

(7.1-47)

(7.1-48)

(7.1-49)

PT t( ) Qfψ' t( ) G t( )
FγaαjFαZα j t( )

λα j
---------------------------------

j 1=

Nα

∑
α 1=

NI

∑ FUηUZU t( ) ηNλNZN t( )+ + +=

Wi 0( ) ψ' 0( ) j  1 2 … Nd, , ,= =

S'  r 0( )ψ' 0( )–=

Zα j 0( ) ψ' 0( ) i = 1, 2, ..., Nα=

ZU 0( ) ψ' 0( )=

ZN 0( )
FU

λN
------ψ' 0( )=

PT 0( ) Qfv G 0( )
FγaαjFα

λα j
------------------

j 1=

Nα

∑
α 1=

NI

∑ FUηU ηNλN+ + + ψ' 0( )=

Q Qf 
Fγaα jFα

λαj
------------------

j 1=

Nα

∑
α 1=

NI

∑ FUηU FUηN+ + +=
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where NI = 3 for the 1979 Standard and NI = 4 for the 1994 Standard.

The quantity Q, which is the total energy in MeV generated per fission, is either an input value or can
be defaulted to 200 MeV. The quantity Qf is defined from Equation (7.1-49) and the user-specified or

defaulted data, even if the second initialization option is used. The total power is an input quantity, and
 is determined from Equation (7.1-48). The remaining quantities are computed from  using

Equations (7.1-43) through (7.1-47). Depending on a user option, the G factor is evaluated from Equation
(7.1-19) with the reactor operating time T set to the user input and the operating time t set to zero or from
the first value in the G factor table in the standard (1.020).

The second option uses a power history to determine the initial values of the fission product and
actinide quantities. The power history consists of one or more periods of constant total power. For each
period, the input consists of the total power, the time duration at that power, and, in the case of three
isotopes, the fraction of power from each isotope. The fission product and actinide differential Equations,
(7.1-39), (7.1-40), and (7.1-41), are advanced in time starting with initial values of zero. The fission rate,

ψ, is defined from Equation (7.1-49). Depending on a user option, the G factor during this advancement is
obtained from Equation (7.1-19) with the reactor operating time T advanced in time and the shutdown time
t equal to zero or using the first value in the G factor table in the standard (1.020).The fission rate is reset to
zero whenever a negative value is computed. This would occur whenever the user-entered total power is
less than the current fission product and actinide decay power. Thus, for shutdown periods, the user may
conveniently enter zero total power even though significant decay power remains. The fission product and
actinide values at the end of the power history become the initial values for the transient. The initial fission
rate is computed from Equation (7.1-49), using the total reactor power at the start of the transient (which
may be different from the last power history value). If this fission rate is negative or zero, it is reset such

that the immediate fission power is 10-12 times the decay power.

The differential equations for the power history calculation are advanced using the same numerical
technique as for the transient advancement except for a simplified time step control. Time step control
consists of starting the advancement of each history period with a time step of 1 second. The time step is
doubled after each advancement. When the next advancement would exceed the time duration, the last
advancement is with the remaining time. This scheme was selected since, with each different power value,
the solution moves toward a new equilibrium condition asymptotically; and the most rapid change is at the
beginning of a power change.

7.1.6  Reactivity Feedback

Either separable or tabular models can be selected for reactivity feedback in point reactor kinetics.

7.1.6.1  Separable Feedback Model

The separable model, which is similar to the RELAP47.1-10 model, defines reactivity as

ψ' 0( ) ψ' 0( )
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(7.1-50)

The quantity ro is an input quantity that represents the reactivity corresponding to assumed

steady-state reactor power at t = 0. The quantity rB is the bias reactivity which is calculated during input

processing such that r(0) = ro and is printed in the input level printout. Should the user check the bias

reactivity computation using Equation (7.1-50), the temperature used in the aWi TWi(t) and aFi TFi(t) terms

should use absolute temperature, i.e., Kelvin in SI units and Rankine in British units. The temperature used
in the table lookup term WFi RF[TFi(t)], however, should still use Kelvin in SI units and Fahrenheit in

British units. 

The quantities rsi are obtained from input tables defining ns reactivity (or scram) curves as a function

of time. The quantities Vci are nc control variables that can be user-defined as reactivity contributions. Rρ

is a table defining reactivity as a function of the current moderator density of fluid ρi(t) in the

hydrodynamic volume i (density reactivity table); Wρi is the density weighting factor for volume i; TWi(t)

is the spatial density averaged moderator fluid temperature of volume i; aWi is the temperature coefficient

(not including density changes) for volume i; and nρ is the number of hydrodynamic volumes in the reactor

core. The quantity RF is a table defining reactivity as a function of the heat structure volume average fuel

temperature TFi(t) in heat structure i (Doppler reactivity table); WFi and aFi are the fuel temperature

weighting factor and the fuel temperature coefficient, respectively, for heat structure i; and nF is the

number of heat structures in the reactor core.

The model assumes nonlinear feedback effects from moderator density and fuel temperature changes
and linear feedback from moderator and fuel temperature changes. It is called the separable model because
each effect is assumed to be independent of the other effects. Boron feedback is not provided, but a
user-defined boron feedback can be implemented with the control system. The separable model can be
used if boron changes are quite small and the reactor is near critical about only one state point.

7.1.6.2  Tabular Feedback Model

A postulated BWR anticipated transient without scram (ATWS) accident is an example where the
reactor could be nearly critical for two different state points. One point is at normal power operating
conditions--high moderator and fuel temperatures, highly voided, and no boron. During accident recovery,
the reactor might approach a critical condition with relatively cold moderator and fuel temperatures, with
no voids, but with some boron concentration. The reactivity could be nearly critical for both states, but the

r t( ) ro rB– rsi t( )
i 1=

ns

∑ Vci
i 1=

nc

∑ Wρi R• ρ ρi t( )( ) aWi TWi• t( )+[ ]
i 1=

nρ

∑+ + + +=

WFi RF• TFi t( )( ) aFi TFi• t( )+[ ]  .
i 1=

nF

∑
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contributions from the different feedback effects are vastly different. The assumptions of no interactions
among the different feedback mechanisms, especially boron, cannot be justified. 

The tabular feedback model computes reactivity from multi-dimensional table lookup and linear
interpolation. The tabular model overcomes the objections of the separable model since all feedback
mechanisms can be nonlinear and interactions among the mechanisms are included. The penalty for the
expanded modeling capability is greatly increased input data requirements.

Two different sets of variables within the tabular feedback option are available. Both sets of variables
allow a boron related variable as one of the four variables. Both sets of variables allow the boron related
variable to be omitted when only three variables are used.

7.1.6.2.1  Standard Variables. With standard independent variables, the tabular model defines
reactivity as

(7.1-51)

(7.1-52)

(7.1-53)

(7.1-54)

. (7.1-55)

The variables, ro, rB, rsi, and Vci are the same as for separable feedback, ρi(t) is the moderator fluid

density in volume i (mass of liquid, vapor, and noncondensable gas divided by volume of volume), TWi(t)

is the spatial density averaged moderator fluid temperature of volume i, Tfi(t) and Tgi(t) are the liquid and

vapor/gas temperatures of volume i, αfi and αgi are liquid and vapor volume fractions in volume i, TFi(t) is

the heat structure volume averaged fuel temperature for heat structure i, and ρbi(t) is the spatial boron

r t( ) ro rB– rsi t( )
i 1=

ns

∑ Vci
i 1=

nc

∑ R ρ t( ) TW t( ) TF t( ) ρb t( ),,,( )+ + +=

ρ t( ) Wρiρi t( )
i 1=

nρ

∑=

TW t( ) WρiTWi t( )
i 1=

nρ

∑ Wρi
αfiρfiTfi t( ) αgiρgiTgi t( )+

αfiρfi αgiρgi+
--------------------------------------------------------------

i 1=

nρ

∑= =

TF t( ) WFiTFi t( )
i 1=

nF

∑=

ρb t( ) Wρiρbi t( )
i 1=

nρ

∑=
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density (mass of boron divided by volume of volume). The average quantities are obtained with the use of
one weighting factor for each hydrodynamic volume Wρi contributing to reactivity feedback and one

weighting factor for each heat structure WFi contributing to reactivity feedback. The reactivity function R

is defined by a table input by the user. In the Input Requirements, Volume II of these manuals, TABLE3
and TABLE4 options refer to the above set of independent variables; TABLE4 option specifies a
four-dimensional table, TABLE3 option assumes no boron dependence and the table is then
three-dimensional.

7.1.6.2.2  Alternate Variables. With alternate independent variables, the tabular model defines
reactivity as

(7.1-56)

(7.1-57)

(7.1-58)

(7.1-59)

. (7.1-60)

The quantity Cb(= ) is the boron concentration in mass of boron per mass of liquid and the other

quantities are the same as for the standard variables. Input options TABLE3A and TABLE4A specify the
alternate set of independent variables; TABLE4A selects four independent variables and TABLE3A
selects only three independent variables with the boron concentration being omitted.

7.1.6.2.3  Interpolation Procedures. The reactivity function R is evaluated by a direct extension
of the one-dimensional table lookup and linear interpolation scheme to multiple dimensions.
One-dimensional table lookup and interpolation of the function V = F(W) uses an ordered set of Nw

r t( ) ro rB– rsi t( )
i 1=

ns

∑ Vci
i 1=

nc

∑ R αg t( ) Tf t( ) TF t( ) Cb t( ),,,( )+ + +=

αg t( ) Wρiαgi t( )
i 1=

nρ

∑=

Tf t( ) WρiTfi t( )
i 1=

nρ

∑=

TF t( ) WFiTFi t( )
i 1=

nF

∑=

Cb t( ) Wρi
ρbi

αfiρfi
------------- t( )

i 1=

nρ

∑=

ρb

αfρf
----------
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independent variable values Wi, with the corresponding values of the dependent variable Vi, to determine

the value of V corresponding to a search argument W. The independent variable is searched such that Wi

and Wi+1 bracket W; an equation for a straight line is fitted to the points Wi, Vi, and Wi+1, Vi+1; and the

straight line equation is evaluated for the given W.

Using subscripts 0 and 1 for the bracketing independent values and corresponding dependent values

and defining  so that w varies from 0 through 1 as W varies from W0 through W1, the

interpolation equations are

(7.1-61)

a0  =  V0 (7.1-62)

a1  =  V1 - V0 (7.1-63)

For two-dimensional interpolation of V = F(W,X), two sets of independent variables are used; Nw

values of Wi and Nx values of Xj. A total of Nw Nx dependent values of Vij are entered, one value for each

combination of variables from the two sets of independent variables. Graphically, the two sets of
independent variables form a rectangular grid when the Wi and Xj variables are plotted on horizontal and

vertical coordinates, respectively. The dependent variables are entered corresponding to the intersections
of the mesh lines. The search for bracketing values in each independent set locates a mesh rectangle, and
the dependent values at the four corners are used to form an interpolation equation which is the product of
two straight line functions, one for each independent variable. Using 0 and 1 subscripts for the bracketing
values,

(7.1-64)

(7.1-65)

a00  =  V00 (7.1-66)

a01  =  V01 - V00 (7.1-67)

w W W0–
W1 W0–
--------------------- 

 =

V aiw
i

i 0=

1

∑=

V   aijw
ixj

j 0=

1

∑
i 0=

1

∑=

x X X0–
X1 X0–
------------------=
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a10  =  V10 - V00 (7.1-68)

a11  =  V11 - V01 - V10 + V00 . (7.1-69)

This process is simply extended to three- and four-dimensions. Three sets of independent variables
define a three-dimensional rectangular grid; and eight dependent quantities corresponding to the corners of
a rectangular solid are used to define the interpolation equation, which is the product of three straight line
functions. In four-dimensions, four sets of independent variables are defined; and 16 dependent values are
used to define the interpolation equation, which is the product of four straight line functions.

For three-dimensional interpolation,

V  =  F(W, X, Y) (7.1-70)

(7.1-71)

(7.1-72)

a000  =  V000 (7.1-73)

a001  =  V001 - V000 (7.1-74)

a010  =  V010 - V000 (7.1-75)

a100  =  V100 - V000 (7.1-76)

a011  =  V011 - V001 - V010 + V000 (7.1-77)

a101  =  V101 - V001 - V100 + V000 (7.1-78)

a110  =  V110 - V010 - V100 + V000 (7.1-79)

a111  =  V111 - V011 - V101 - V110 + V001 + V010 + V100 - V000 . (7.1-80)

For four-dimensional interpolation,

y Y Y0–
Y1 Y0–
------------------=

V     aijkwixjyk

k 0=

1

∑
j 0=

1

∑
i 0=

1

∑=
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V  =  F(W, X, Y, Z) (7.1-81)

(7.1-82)

(7.1-83)

a0000  =  V0000 (7.1-84)

a0001  =  V0001 - V0000 (7.1-85)

a0010  =  V0010 - V0000 (7.1-86)

a0100  =  V0100 - V0000 (7.1-87)

a1000  =  V1000 - V0000 (7.1-88)

a0011  =  V0011 - V0001 - V0010 + V0000 (7.1-89)

a0101  =  V0101 - V0001 - V0100 + V0000 (7.1-90)

a0110  =  V0110 - V0010 - V0100 + V0000 (7.1-91)

a1001  =  V1001 - V0001 - V1000 + V0000 (7.1-92)

a1010  =  V1010 - V0010 - V1000 + V0000 (7.1-93)

a1100  =  V1100 - V0100 - V1000 + V0000 (7.1-94)

a0111  =  V0111 - V0011 - V0101 + V0110 + V0001 + V0010 + V0100 - V0000 (7.1-95)

a1011  =  V1011 - V0011 - V1001 + V1010 + V0001 + V0010 + V1000 - V0000 (7.1-96)

a1101  =  V1101 - V0101 - V1001 + V1100 + V0001 + V0100 + V1000 - V0000 (7.1-97)

z Z Z0–
Z1 Z0–
-----------------=

V       aijkmwixjykzm

m 0=

1

∑
k 0=

1

∑
j 0=

1

∑
i 0=

1

∑=
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a1110  =  V1110 - V0110 - V1010 + V1100 + V0010 + V0100 + V1000 - V0000 (7.1-98)

a1111  =  V1111 - V0111 - V1011 - V1101 - V1110 + V0011 + V0101 + V0110 + V1101 
       + V1001 + V0001 - V 0010 - V1010 + V1100 -  V 0100  -  V 1000 + V0000 . (7.1-99)

The interpolating equations define a continuous function. There is no discontinuity in the dependent
quantity as any one or combination of dependent variables pass to the next bracketing pair of values.

Using NW, NX, NY, and NZ as the number of values in the four sets of independent variables, the

number of data points for a three-dimensional table is NW NX NY and is NW NX NY NZ for a

four-dimensional table. Using only four values for each independent variable, a four-dimensional table
requires 256 data points.

7.1.7  Reactor Kinetics Numerical Procedures

The reactor kinetics equations are advanced in time using the modified Runge-Kutta method of

Cohen.7.1-11 A first-order differential equation is written as

  =  αn(t) + R(n,t) (7.1-100)

where α is constant over the time step, and R(n, t) contains the remaining terms of the differential equation,

including the non-constant portion of any coefficient of n(t). If the coefficient of n(t) is β(n, t), α would be

β[n(0), 0]; and R(n, t) would contain a term of the form β[n(t), t] - α n(t). Multiplying Equation (7.1-100)

by the integrating factor  and integrating gives

. (7.1-101)

Since

, (7.1-102)

. (7.1-103)

Letting λ = ut, then dλ = tdu, and

n· t( )

e α– t

n t( ) n 0( )eα t eα t λ–( )R n λ,( ) λd
0

t

∫+=

n 0( )eα t n 0( ) αn 0( )eα t λ–( ) λd
0

t

∫+=

n t( ) n 0( ) αn 0( ) R n λ,( )+[ ]e t λ–( ) λd
0

t

∫+=
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. (7.1-104)

The numerical technique for advancing the solution over the time step consists of making
approximations to the behavior of R(n,u) over the time step. For convenience in the following expressions,
the following function is defined,

. (7.1-105)

Stage 1:

Assume R(n, λ) = R[n(0), 0] = R0 and write n(0) as n0; then compute  by

. (7.1-106)

Stage 2:

Assume straight line variation of R(n, λ) between R0 and  and compute  by

(7.1-107)

R(n, λ)  =  R0 + (R1 - R0) u (7.1-108)

. (7.1-109)

Stage 3:

Assume straight line variation of R (n, λ) between R0 and  and compute n(h) by

(7.1-110)

n t( ) n 0( ) t αn 0( ) R n u,( )+[ ]eαt 1 u–( ) ud
0

1

∫+=

Cm x( ) um 1– ex 1 u–( ) ud
0

1

∫=

n h
2
--- 

 

n1 n h
2
--- 

  n0
h
2
--- αn0 R0+( )C1 αh

2
--- 

 += =

R1 R n1
h
2
---, 

 = n h
2
--- 

 

R n λ,( ) R0
2 R1 R0–( )λ

h
------------------------------+=

n2 n h
2
--- 

  n1
h
2
--- R1 R0–( )C2 αh

2
--- 

 += =

R2 R n2
h
2
---, 

 =

R n λ,( ) R0
2
h
--- R2 R0–[ ]λ+=
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R(n, u)  =  R0 + 2 [R2 - R0] u (7.1-111)

n3  =  n(h)  =  n0 + h(αn0 + R0) C1(αh) + 2h(R2 - R0) C2(αh) . (7.1-112)

Stage 4:

Assume quadratic through points R0, R2, and R3 = R(n3, h), then compute n(h) by

R(n, u)  =  (2R0 + 4R2 + 2R3) u2 + (-3R0 + 4R2 - R3) u + R0 (7.1-113)

n4  =  n(h)  =  n3 + h (R4 - R3) [2C3 (αh) - C2(αh)] . (7.1-114)

Stage 5:

Assume quadratic through points R0, R2, and R4 = R(n4, h), then compute n(h) by

n5  =  n(h)  =  n4 + h (R4 - R3) [2C3 (αh) - C2 (αh)] . (7.1-115)

Third-, fourth-, and fifth-order approximations are obtained by terminating the process at the end of
the third-, fourth-, and fifth-stages, respectively. ATHENA uses only the fifth-order approximation.

By direct integration, the function C1(x) is given by

. (7.1-116)

Using integration by parts, a recursion relation for Cm(x) is

. (7.1-117)

During machine calculations of the Cm(x) functions for x < 1, excessive loss of significance occurs.

For this range, C3(x) is computed from its MacLaurin series expansion

. (7.1-118)

C1 x( ) ex 1–
x

-------------=

Cm 1+ x( )
mCm x( ) 1–

x
-----------------------------=

C3 x( ) 2 1
3!
----- x

4!
----- x2

5!
----- x3

6!
----- x4

7!
----- x5

8!
----- x6

9!
----- x7

10!
--------+ + + + + + + 

 =
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C2 and C1 are evaluated by solving Equation (7.1-117) for Cm (x).

During the advancement in time of the solution, the time increment is automatically increased or
decreased to maintain a specified degree of accuracy. After the calculations for a reactor kinetics time
advancement, an empirical formula is used to estimate the error. If he error is excessive, the time increment
is halved; and the advancement calculation is redone. If the error is sufficiently small, the time interval is
doubled for the next time step. If the estimated error is between limits, the same interval is used for the

next time advancement. These procedures for time step control, taken from the AIREK code7.1-12 are as
follows:

(7.1-119)

. (7.1-120)

ω is defined by

(7.1-121)

. (7.1-122)

The α in Equation (7.1-117) is that of the neutron flux Equation (7.1-37)

. (7.1-123)

The QL and QH appearing below are 0.0001 and 0.001 respectively.

1. If δ < 2-15 and Q > QL, the program continues with the same time step. 

2. If δ < 2-15 and Q < QL, the program doubles the time step for the next advancement.

3. If δ > 2-15 and

a. Q < QL, the time step is doubled for the next advancement.

ω1
ψ'· 0( )
ψ' 0( )
-------------=

ω3
ψ'· h( )
ψ' h( )
-------------=

ψ' h( ) ψ' 0( )eωh=

Q hC2 αh( )
1 C1 αh( )+
--------------------------- ω1 2ω– ω3+( )=

δ max n1i n0i–
n1i

------------------- 
 =
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b. Q < QH, the same time step is used for the next advancement.

c. Q > QH, the time advancement is recalculated with half the time step.

4. The time advancement is also recomputed with the time step halved if

a. αh of any equation > 88.0.

b. negative or zero power is computed.

If the coefficient of the neutron flux in Equation (7.1-37) is negative, a subtraction is involved in
determination of the derivative and a loss of significant digits can occur. If this coefficient is negative, a
check is made of the number of bits lost in the subtraction. If more than nine bits are lost, the value of
neutron flux computed by the current stage of the advancement procedure is discarded; instead, neutron
flux is determined from the expression obtained by setting the neutron flux derivative to zero

. (7.1-124)

The transfer of information between the reactor kinetics calculation and the other calculations is
explicit. Hydrodynamic and heat conduction/transfer calculation precede reactor kinetics, and the control
system calculation follows reactor kinetics. The reactor power used in hydrodynamics and heat conduction
is the value at the beginning of the time step. The reactivity used as the end of time step value in the
kinetics advancement is computed from end of time step values from hydrodynamics and heat conduction
and beginning of time step values from the control system.

The reactor kinetics equations are advanced at the same time step as the hydrodynamics, and
reactivity is assumed to vary linearly between time step values. The maximum time step for the reactor
kinetics advancement is the hydrodynamic time step. That time step is reduced, if necessary, as described
above.
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7.2  Multi-Dimensional Neutron Kinetics

The multi-dimensional neutron kinetics model in the ATHENA code was developed to allow the user
to model reactor transients where the spatial distribution of the neutron flux changes with time. The model

is based on the NESTLE7.2-1 code developed at North Carolina State University. The model solves the
few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). It can solve the
steady state eigenvalue (criticality) and/or eigenvalue initiated transient problems. The subroutines used to
solve the steady state eigenvalue and the eigenvalue initiated transient problems were taken from the
NESTLE code source, were modified to be compatible with the coding standards and data storage
methodology used in ATHENA, and were inserted into ATHENA. ATHENA was modified to call the
appropriate NESTLE subroutines depending upon the options chosen by the user. 

The neutron kinetics model in NESTLE and ATHENA uses the few-group neutron diffusion
equations. Two or four energy groups can be utilized, with all groups being thermal groups (i.e. upscatter
exits) if desired. Core geometries modeled include Cartesian and hexagonal. Three, two and one
dimensional models can be utilized. Various core symmetry options are available, including quarter, half
and full core for Cartesian geometry and one-sixth, one-third and full core for hexagonal geometry. Zero
flux, non-reentrant current, reflective and cyclic boundary conditions are treated
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The few-group neutron diffusion equations are spatially discretized utilizing the Nodal Expansion
Method (NEM). Quartic or quadratic polynomial expansions for the transverse integrated fluxes are
employed for Cartesian or hexagonal geometries, respectively. Transverse leakage terms are represented
by a quadratic polynomial or constant for Cartesian or hexagonal geometry, respectively. Discontinuity
Factors (DFs) are utilized to correct for homogenization errors. Transient problems utilize a user specified
number of delayed neutron precursor groups. Time discretization is done in a fully implicit manner
utilizing a first-order difference operator for the diffusion equation. The precursor equations are
analytically solved assuming the fission rate behaves linearly over a time-step.

Independent of problem type, an outer-inner iterative strategy is employed to solve the resulting
matrix system. Outer iterations can employ Chebyshev acceleration and the Fixed Source Scaling
Technique to accelerate convergence. Inner iterations employ either color line or point SOR iteration
schemes, dependent upon problem geometry. Values of the energy group dependent optimum relaxation
parameter and the number of inner iterations per outer iteration to achieve a specified L2 relative

errorreduction are determined a priori. The non-linear iterative strategy associated with the NEM method
is utilized. This has advantages in regard to reducing FLOP count and memory size requirements versus
the more conventional linear iterative strategy utilized in the surface response formulation. In addition, by
electing to not update the coupling coefficients in the nonlinear iterative strategy, the Finite Difference
Method (FDM) representation, utilizing the box scheme, of the few-group neutron diffusion equation
results. The implication is that the model can be utilized to solve either the nodal or FDM representation of
the few-group neutron diffusion equation.

The neutron kinetics subroutines require as input the neutron cross sections in the computational
nodes of the kinetics mesh. A neutron cross section model has been implemented that allows the neutron
cross sections to be parameterized as functions of ATHENA heat structure temperatures, fluid void
fraction or fluid density, poison concentration, and fluid temperatures. A flexible coupling scheme
between the neutron kinetics mesh and the thermal hydraulics mesh has been developed to minimize the
input data needed to specify the neutron cross sections in terms of ATHENA thermal hydraulic variables.
A control rod model has been implemented so that the effect of the initial position and subsequent
movement of the control rods during transients may be taken into account in the computation of the
neutron cross sections. The control system has been modified to allow the movement of control rods by
control variables.

7.2.1  Nodal Model - Cartesian Geometry

The nodal model for the solution of the steady state multi-group diffusion equations in Cartesian
geometry is described in the following sections.

7.2.1.1  Steady State Eigenvalue Problem

The following section describes the standard NEM formulation for the solution of the

three-dimensional, Cartesian geometry, multi-group, eigenvalue neutron diffusion equation7.2-2,7.2-3. The
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principal characteristics of the polynomial nodal method are its quartic expansions of the one-dimensional
transverse-integrated flux and quadratic leakage model for the transverse leakage.

Consider the general form of the steady-state multi-group neutron diffusion equation, written in
standard form and with the group constants (i.e., properly weighted cross-sections and discontinuity
factors) already available from a lattice physics calculation for g = 1, 2, ..., G. It is given by

(7.2-1)

where the dependence of each quantity on the spatial coordinate  has been suppressed, and

Dg = diffusion coefficient (cm)

φg = neutron flux (cm-2sec-1)

Σtg = total macroscopic cross section (cm-1)

Σsgg’ = group-to-group scattering cross section (cm-1)

χg = fission neutrons yield

k = multiplication factor (i.e., critical eigenvalue)

vg = average number of neutrons created per fission

Σfg = macroscopic fission cross section (cm-1).

As with most modern nodal methods, we begin by integrating the multi-group neutron diffusion
equation over a material-centered spatial node which has homogenized properties. For Cartesian geometry
we rewrite Equation (7.2-1) for the arbitrary spatial node l as

, (7.2-2)

where

(7.2-3)

∇ Dg∇φg Σtgφg+⋅ Σsgg ′φg ′
χg

k
----- vg ′Σfg ′φg ′
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r
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l r( ) Dg
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l r( )+– Qg
l r( )=

g 1 G,( )∈
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INEEL-EXT-98-00834-V1 7-24



ATHENA/2.3
(7.2-4)

. (7.2-5)

For simplicity, in cases where redundant equations exist in all three directions, the illustrating
equations will be only given in the x-direction. Using Fick’s Law, which in the x-direction can be
expressed as,

 (7.2-6)

where,  is the x-component of the net neutron current which allows Equation (7.2-2) to be rewritten

as

(7.2-7)

Integration of Equation (7.2-7) over the volume of node l generates a local neutron balance equation
in terms of the face-averaged net currents and the node volume average flux. It is given by

(7.2-8)

where, assuming node l is centered around the coordinate’s origin, the volume integrated quantities are
defined as

(7.2-9)

(7.2-10)
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 (7.2-11)

where  is the average x-directed net current on node faces .

Equation. (7.2-8) is known as the nodal balance equation. Now for the neutron diffusion equation
written in this form, in order to obtain the spatial neutron flux distribution, one must devise some
relationship between the node average flux and the face-averaged net (surface) currents. It is the equations
used to compute the surface currents in Equation (7.2-8) which distinguish one nodal formulation from
another. In NEM, the widely used method of transverse-integration is used, where the three-dimensional
diffusion equation is integrated over the two directions transverse to each axis. This generates three
one-dimensional equations, one for each direction in Cartesian coordinates, of the following form:

(7.2-12)

where  is the average y-direction transverse leakage given by

(7.2-13)

and  is the average z-direction transverse leakage given by 

. (7.2-14)

In NEM, the one-dimensional averaged flux that appears in Equation. (7.2-12), is expanded as a
general polynomial given by

(7.2-15)
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where  is the node average flux, implying for Equation (7.2-15) to be true that  must be chosen

such that the basis functions satisfy

. (7.2-16)

Note that for quartic NEM, the method used in ATHENA, the summation extends to N = 4. The first four

basis functions in NEM can be expressed as follows7.2-2,

(7.2-17)

which can be shown to also satisfy

. (7.2-18)

At this point it is appropriate to consider the elementary concept of accounting for the total number
of equations and that of unknowns. For a three-dimensional Cartesian geometry, the node average and N
expansion coefficients in each direction appear per node per energy group, implying a total of 3N+1
equations are required. The nodal balance equation, Equation (7.2-8), provides one equation, where now
Equations (7.2-6) and (7.2-15) are used to eliminate face-averaged net currents from this equation. Surface
current and flux continuity provide 6 more equations per node per energy group. So for N = 2, there would
be an equal number of equations and unknowns without any further development. However, for N = 4, two
additional unknowns are introduced for each direction per node per energy group. This is addressed by

using a weighted residual scheme7.2-4 applied to Equation (7.2-12), which in essence provides the
additional equations (referred to as the moment equations) needed,

(7.2-19)

where the two weighting functions for n = 1,2 are chosen to be the same as the basic functions, namely

ωn(x) = fn(x), as those used in the one-dimensional flux expansiona. Here, the first and second (actually

linear combination of zeroth and second) moments of the flux, source, and leakage for each group g are
defined by
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. (7.2-20)

The first term in Equation (7.2-19) is evaluated by using Equations (7.2-6) and (7.2-15) and the
definition of the expansion coefficients, and completing the integration (i.e. inner product) analytically.

One last point which needs to be addressed before Equation (7.2-19) can be solved is the transverse
leakage terms appearing on the right hand side. Their spatial dependency is unknown, so their “shape”
must be approximated. The most popular approximation in NEM is the quadratic transverse leakage
approximation. For example, the x-direction spatial dependence of the y-direction transverse leakage is
approximated by

 (7.2-21)

where  is the average y-directed leakage in node l, and the coefficients  and  can be expressed

in terms of average y-directed leakages of the two nearest-neighbor nodes along the x-direction (i.e. nodes
l-1 and l+1) so as to preserve the node average leakages of these three nodes. The quadratic expansion
coefficients can be shown to be given by

(7.2-22)

(7.2-23)

where

. (7.2-24)

7.2.1.2  Non-Linear Iterative Strategy

The most common manner of solving the matrix system associated with NEM is the response-matrix
formulation. To minimize computer run time and memory requirements, and to facilitate the capability to

a. This constitutes a moments weighting scheme; if one uses  for n = 1,2 it is known as 

Galerkin weighting. Numerical experiments favor moments weighting.
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solve either the NEM or Finite Difference Method (FDM) formulation, the non-linear iterative strategy is

employed in ATHENA. This technique was developed by Smith7.2-5,7.2-6,7.2-7 and successfully
implemented into the Studsvik QPANDA and SIMULATE code packages. The documentation available
on this technique is scarce, but it turns out to be rather simplistic and almost trivial to implement in a FDM
code which utilizes the box-scheme (i.e. material-centered).

The basic idea is applicable to the standard FDM solution algorithm of the multi-group diffusion
equation. Solving the FDM based equation utilizing an outer-inner iterative strategy, every  outer

iterations (where  is somewhat arbitrary but can be optimized) the so-called “two-node problem”

calculation (a spatially-decoupled NEM calculation spanning two adjoining nodes) is performed for every
interface (for all nodes and in all directions) to provide an improved estimate of the net surface current at
that particular interface. Subsequently, the NEM estimated net surface currents are used to update (i.e.
change) the original FDM diffusion coupling coefficients. Outer iterations of the FDM based equation are
then continued utilizing the updated FDM coupling coefficients for  outer iterations. The entire

process is then repeated. This procedure of updating the FDM couplings is a convergent technique which
progressively forces the FDM equation to yield the higher-order NEM predicted values of the net surface
currents while satisfying the nodal balance Equation (7.2-8), thus yielding the NEM results for the
node-average flux and fundamental mode eigenvalue. The advantages of this technique come in many
forms; the storage requirements are minimal because the two-node problem arrays are re-usable
(disposable) at each interface, the rate of convergence is nearly comparable to that of the base FDM
algorithm being used, the number of iteratively determined unknowns is reduced by a factor of 6 (node
flux vs. partial surface current), and the simplicity of the algorithm and ease of implementation, compared
to any other nodal technique, is far superior.

The two-node problem produces an 8G x 8G linear system of equations which can be constructed by
applying the standard NEM relations to two adjoining nodes. For simplicity, consider two arbitrary
adjoining nodes in the x-direction. Denote these notes as l and l+1:

Substitution of the one-dimensional expansion, Equation (7.2-15), into Fick’s law yields expressions
for the average x-direction net surface currents at the left(-) and right(+) interfaces of node l gives

. (7.2-25)

Now, assume the node average flux, criticality constant, and all transverse direction terms are known
from a previous iteration; then, the total number of unknowns associated with the x-direction two node
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problem is 8G, which corresponds to the 4 expansion coefficients/group/node (x) G groups (x) two nodes.
The 8G constraint equations are obtained as follows. We begin with the substitution of Equation (7.2-25)
into the nodal balance equation for node l, to yield the zeroth moment constraints (G equations/node) given
by

. (7.2-26)

A similar substitution into the moment-weighted equation, Equation (7.2-19), yields the first and
second moment constraints (2G equations/node) given by

(7.2-27)

. (7.2-28)

Similar equations can be written for node l + 1, producing a total of 6G equations. The continuity of
net surface current constraints at the interface (G equations) are obtained by using Equation (7.2-25) at the
adjoining interface of the two nodes. The result is

. (7.2-29)

Last, the continuity (or discontinuity) of surface-averaged flux constraints (G equations) are obtained
by equating the surface-averaged fluxes of the two adjoining nodes by using Equation (7.2-15). The result
is

(7.2-30)

where  and  are the Discontinuity Factors (DFs) obtained from lattice physics calculations. Do

note that continuity conditions are never imposed on the outside surfaces of the two-node problem, since
the two-node problem is deliberately formulated to be spatially decoupled. Continuity is assured in the
formulation of the FDM based equations.
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Equations (7.2-15) through (7.2-30) constitute the 8G system of equations needed to be solved at
each interface. This matrix system, after taking advantage of its reducability and by noting that the
even-moment expansion coefficients don’t change whether the node is on the left or right of a two-node

problem, can be reduced to smaller systems which can be solved quite efficiently7.2-8. Table 7.2-1
illustrates this more efficient arrangement of unknowns for the case of G = 2.

Table 7.2-1 Non Zero entries in the 16 by 16 two-node NEM Problem.

Eqn
G
r
p

N
o
d

a b c d e f g h i j k l m n o p

0th Moment 1 l x x

0th Moment 2 l x x

2nd Moment 1 l x x x x

2nd Moment 2 l x x x x

0th Moment 1 l+
1

x x

0th Moment 2 l+
1

x x

2nd Moment 1 l+
1

x x x x

2nd Moment 2 l+
1

x x x x

1st Moment 1 l x x x x

1st Moment 2 l x x x x

1st Moment 1 l+
1

x x x x

1st Moment 2 l+
1

x x x x

Cur Con 1 x x x x x x x x

Cur Con 2 x x x x x x x x

Fix Dis 1 x x x x

Fix Dis 2 x x x x
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* Refers to order of polynomial that transverse integrated flux expansion coefficient is associated with.

In ATHENA, the two-node problems are solved by utilizing the analytic solution to the 8G x 8G
matrix system. This was accomplished by employing symbolic manipulator software to produce the
FORTRAN code segment used in ATHENA. This approach is computationally more efficient than
utilizing a direct matrix solver (e.g., LU decomposition); however, it limits the values of G to those
directly programmed for. Also note that on boundaries special treatments of the two-node problems are
required. Depending upon the specified boundary condition (BC), one-node problems may originate (e.g.,
zero flux BC), or on interior axis geometry unfolding may be required to create a two-node problem (e.g.,
cyclic BC).

Solutions of the two-node problems provide NEM evaluated values of the currents on all surfaces for
specified values of the node average fluxes (recall they were assumed known in solving the two-node
problems). To correct the FDM based expression for the surface current, the following approach is utilized.
The coupling coefficient update to the FDM equation can be implemented by simply expressing the FDM
net surface current at the x+ face of node l as follows:

Unknown Node Group Exp. Coef.*

a l 1 2

b l 2 2

c l 1 4

d l 2 4

e l+1 1 2

f l+1 2 2

g l+1 1 4

h l+1 2 4

i l 1 1

j l 2 1

k l 1 3

l l 2 3

m l+1 1 1

n l+1 2 1

o l+1 1 3

p l+1 2 3
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. (7.2-31)

The first term on the RHS is the normal FDM approximation for a box scheme, where  is the

actual FDM diffusion coupling coefficient between nodes l and l+1. It is given by

. (7.2-32)

The second term on the RHS represents the nonlinear NEM correction applied to the FDM scheme.
The (+) sign between the flux values in the second term of Equation (7.2-31) is purposely there to improve

the convergence behavior of the nonlinear iterative methoda. Note that if  is zero, which it initially

is in ATHENA’s implementation, then Equation (7.2-31) corresponds to the standard FDM definition of
the net surface current. This is the basis for the FDM option within ATHENA, where now two-node

problem solves and coupling coefficients updates are never completed. The value of  is determined

by setting Equation (7.2-31) equal to the NEM two-node predicted surface current value, using the
associated node average flux values in Equation (7.2-31)and solving for this quantity.

Summarizing, to apply a NEM update after  outer iterations of the FDM routine, one solves the

two-node problem at a given interface, then (with the expansion coefficients known for that interface) one
calculates the NEM estimate of the net surface current using Equation (7.2-25). Finally, one equates this

result to Equation (7.2-31), and solves for the value of  which will be used in the subsequent set of

FDM iterations.

7.2.2  Nodal Model - Hexagonal Geometry

The nodal method for the solution of the multi-group diffusion equations in hexagonal geometry is
described in the following sections.

7.2.2.1  Steady State Eigenvalue Problem

Utilization of NEM for hexagonal (hex) geometry introduces several complications not encountered
for Cartesian geometry, originating because the surfaces of the hex do not all align with the Cartesian axis.

This can be seen in Figure 7.2-1. The axes are placed so that the positive x axis is perpendicular to one of
the faces of the hexagonal node and proceeds to the right (East), and the positive y axis passes through the

a. Personal communication, G. H. Hobson to P. J. Turinsky, 1991.

Jgx +
l FDM,  Dgx +

l FDM,

xl∆ xl 1+∆+
2

----------------------------

---------------------------- φg
l 1+

φg
l

–( )– D̃gx +
l NEM,

xl∆ xl 1+∆+
2

----------------------------

---------------------------- φg
l 1+

φg
l

+( )–=

Dgx +
l FDM,

Dgx +
l FDM, Dg

l Dg
l 1+ xl∆ xl 1+∆+( )

Dg
l xl∆ Dg

l 1+ xl 1+∆+
---------------------------------------------------=

D̃gx +
l NEM,

D̃gx +
l NEM,

N0∆

D̃gx +
l NEM,
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point of intersection of the next two adjacent faces of the hexagon when proceeding around the hexagonal
node in the counterclockwise direction (North).

Lawrence addressed these difficulties in implementing the hex NEM option in DIF3D7.2-9.
ATHENA utilizes this earlier work, now adapting it for implementation within the context of the
non-linear iterative method which facilitates utilization of a higher order transverse leakage treatment.

The derivation of the governing equations for hex-Z geometry follows the same general approach as
for Cartesian geometry. Introducing the transverse directions u and v noted in Figure 7.2-1, the nodal
balance equation over a hex is given by

(7.2-33)

where the ’s denote as before face-averaged net leakages. Let us first consider the radial plane. By

transverse-integration of the diffusion equation over z and y, the one-dimensional balance equation in
direction x is

Figure 7.2-1 Hexagonal geometry dimensions and axis orientations

h

1
3

-------h
2
3

-------h

uv

y

x

2
3h
------ 

  Lgx

l Lgu

l Lgv+ +[ ] 1
zl∆

------- 
  Lgz

l Ag
l φg

l
+ + Qg

l
=

L
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(7.2-34)

where  denote the upper and lower boundaries of the hex for a given x value; that is, 

, (7.2-35)

 denotes the transverse-integrated current in the x direction,

, (7.2-36)

 denotes the z-integrated, surface-normal components of the net current across the u and

v directed surfaces,

, (7.2-37)

and  denotes axial leakage defined by

. (7.2-38)

Two additional equations can be defined in a similar manner for the u and v directions. Note that
these quantities are neither volume nor surface averaged, which differs from the earlier derivation for
Cartesian coordinates. This difference arises since taking the derivation of the surface-averaged x-directed
current appearing in Equation (7.2-34) would involve derivatives of , which introduces algebraic

complexity as now discussed.

xd

djgx

l

Ag
l φgx

l x( )+ Qgx

l x( )  2
3

-------jgxy
x y,( )

y– s x( )

ys x( )

yLgz

l x y,( )d
y– s x( )

ys x( )

∫––=

ys x( )±

ys x( ) 1
3

------- h x–( )≡ for x  h
2
---– h

2
---,∈

jgx

l x( )

jgx

l x( ) dz

zl∆–
2

----------

zl∆
2

-------

∫ dy D– g
l

y– s x( )

ys x( )

∫ x∂
∂ φg

l x y z, ,( )=

jgxy

l x ys x( )±,( )

jgxy

l x ys x( )±,( ) dzDg
l n̂± ∇φg

l x y z, ,( ) ys x( )±⋅

zl∆–
2

----------

zl∆
2

-------

∫+−=

Lgz

l x y,( )

Lgz

l x y,( ) D– g
l

z∂
∂ φg

l x y z, ,( )
zl∆–

2
----------

zl∆
2

-------

=

ys x( )
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To solve Equation (7.2-34) using NEM the one-dimensional surface-averaged flux is expanded in
terms of a polynomial expressed as indicated in Equation (7.2-15) with N = 4. The expansion functions
fn(x) for n = 1 and 2 are selected as before, indicated in Equation (7.2-17). However, due to the behavior of

 with x, the functions fn(x) for n = 3 and 4 must be selected differently for hexagonal geometry. To

see this need, evaluate the transverse-integrated current in terms of the transverse-integrated flux, utilizing
their definitions and Fick’s Law to obtain

(7.2-39)

where

. (7.2-40)

Now

(7.2-41)

is discontinuous at x = 0, the node’s center-line perpendicular to the x-direction. Since the
transverse-integrated current and flux must be continuous everywhere, Equation (7.2-39) implies that the
first derivative of the transverse-integrated flux must be discontinuous at x = 0; in particular,

. (7.2-42)

To capture this discontinuity and satisfy Equations (7.2-16) and (7.2-18), the functions fn(x) for n = 3 and

4 are selected as follows:

. (7.2-43)

φgx
x( )

jgx

l x( )  Dg
l

xd
dφg

l

Dg
l y′s x( ) φgxy

l x ys x( ),( ) φgxy

l x ys x( )–,( )+[ ]+–=

φgxy

l x y,( ) dzφg
l x y z, ,( )

zl∆–
2

----------

zl∆
2

-------

∫=

ys′ x( )  1
3

-------– sign x( )=

 Dg
l

xd

dφgx

l

– 
 

ε–

ε

ε 0→
lim 2Dg

l

3
--------- φg

l x ys x( ),( ) φg
l x y– s x( ),( )+[ ]=

f3 f4

10
13
------ x

h
--- 

  2 1
2
--- x

h
---– 3

52
------+ x

h
--- 

  x
h
---

1
2
---– 

 

             
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We again have a problem with five unknowns per node and group. Continuity of
transverse-integrated current, discontinuity of surface-averaged flux, and the nodal balance equation
provide three of the required five equations. The jump discontinuity condition given by Equation (7.2-42)

provides an additional equation, which can be shown to produce7.2-9

(7.2-44)

where

. (7.2-45)

Assuming expressions for  in terms of node average flux and expansion coefficients

can be obtained, one then has five unknowns and four equations implying one additional equation is
required. This is provided by a Weighted Residual Method, where the weight  is defined as 

. (7.2-46)

Using this weight in a Weighted Residual Method in conjunction with the nodal balance equation can
be shown equivalent to preserving half-node nodal balance on each half of the hexagonal node. The
Weighted Residual Method equation that results is

(7.2-47)

where the following definitions have been introduced

(7.2-48)

Egx

l x( ) φg
l x ys x( ),( ) φg

l x y– s x( ),( ) 2φgx

l x( )–+=

φg
l x ys s( )±,( )

ω1 x( )

ω1 x( ) sign x( )=

Ag
l 32Dg

l

h2
------+ φgx1

l Qgx1

l 2
3h
------ Tgx

l Tgu
l Tgv

l
–+[ ]– 1

zl∆
-------Lgzx1

l
– 40

9
------

Dg
l

h2
------agx1

l+=

φgx1

l

1
Vl∆

--------- ω1 x( ) φgx

l x( ),〈 〉

Qgx1

l

1
Vl∆

--------- ω1 x( ) Qgx

l x( ),〈 〉

Lgzx1

l

zl∆

Vl∆
--------- ω1 x( ) dyLgz

l x y,( )

y– s x( )

ys x( )

∫,〈 〉

                              
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Substitution of the polynomial

expansion for the transverse integrated flux into Equation (7.2-48) gives  and  in terms of the

expansion coefficients.

To solve the above equations, we require expressions for  and  in terms of the node

average flux and expansion coefficients. As with Cartesian geometry, the transverse leakage in the
z-direction will be approximated by a quadratic polynomial. Specifically, following Equation (7.2-21) one
makes the following approximation:

(7.2-49)

where  and  are defined as previously for Cartesian geometry.

To obtain the expression for  it can be shown that via a Taylor series expansion about y = 0

that

(7.2-50)

where the y-directed leakage is defined as

. (7.2-51)

Using the “two-step” approximation (i.e., assuming constant transverse leakage over each half-node)
produces

Tgu

l 3h
Vl∆
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ys x( )
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0
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0

h/2

∫+=
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---– 
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2ys x( )
---------------- dy

ys x( )–

ys x( )

∫ Lgz
l x y,( ) Lgzx

l
ρgzx1

l f1 x( ) ρgzx2
l f2 x( )+ += =

f1 x( ) f2 x( )

Egx
l 0( )

Egx
l x( )  1

6Dg
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(7.2-52)

where

(7.2-53)

and

. (7.2-54)

Using this approximation and ignoring the 0(h4) term in Equation (7.2-50) gives

(7.2-55)

. (7.2-56)

To complete the evaluation, expressions for  and  in terms of node average flux and

expansion coefficients must be determined. This is done via manipulation of previously introduced
equations and definitions resulting in the following expression, recalling Equation (7.2-44):

. (7.2-57)

Since the transverse integrated flux is a function of node average flux and expansion coefficients,
Equation (7.2-57) involves only the unknowns being sought except for the leakage terms. 

To complete the formulation of the hexagonal problem, from Equation (7.2-39) one recognizes that

expressions for  at  in terms of the working unknowns is required to evaluate

the surface currents. From Equation (7.2-39) the expression for the face-averaged transverse-integrated
current can be obtained. It is given by

Lgy
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. (7.2-58)

Again an expression for  in terms of the working unknowns is required, this time evaluated

at . Using the “two-step” approximation produces

(7.2-59)

and substituting in the expression for  gives

(7.2-60)

(7.2-61)

By combining Equation (7.2-58) and either Equation (7.2-60) or (7.2-61) we obtain an expression for
the surface-averaged transverse current in one direction in terms of currents in the other hex directions.
This does not succeed in eliminating current as an unknown as we desire. This can be addressed as follows:

Since  are truly continuous since the fluxes defining it via Equation (7.2-45)

are continuous, and the surface averaged transverse-integrated current is continuous everywhere, Equation

(7.2-58) implies that the flux derivative appearing in this equation must be discontinuous at .

Employing the above noted properties, the current continuity condition produces

. (7.2-62)

This expression for current is in terms of the expansion coefficients as desired.
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Utilizing Equations (7.2-33), (7.2-47), (7.2-57), and (7.2-58) through (7.2-61) in the
surface-averaged current continuity equation, surface-averaged flux discontinuity equation, and various
auxiliary equations relating currents and leakages to flux, we arrive at 13 equations for the 13 unknowns
per node per energy groups when considering the x, u, and v directions. Deferring the two-node problem
formulation, the z-direction transverse integrated equations will be now developed.

The z-direction transverse integrated equations development follows that for Cartesian geometry
except for the transverse leakage terms in the radial plane. The transverse balance equation is given by

(7.2-63)

where the radial plane transverse leakage is defined as

. (7.2-64)

This equation is solved assuming a quartic expansion for the transverse integrated flux as used in
Cartesian geometry. The nodal balance [Equation (7.2-33)], first and second moment Weighted Residual,
surface-averaged flux discontinuity, and surface-averaged current continuity equations provide the
required number of equations.

The moments of the radial plane transverse leakage that enter the Weighted Residual equations are
evaluated utilizing the quadratic approximation to obtain the within node shape; that is,

(7.2-65)

where

(7.2-66)

and hence
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. (7.2-67)

The expansion coefficients in Equation (7.2-65) are defined as before [see Equations
(7.2-22)-(7.2-24)]. Since the derivation of the Weighted Balance equations is identical to that presented for
Cartesian geometry except as noted above in regard to transverse leakages, the interested reader is referred
to the earlier presentation.

7.2.2.2  Non-Linear Iterative Strategy

For hex-Z geometry, the non-linear iterative strategy is applied the same as for Cartesian geometry.
For each surface of a node, a two-node problem is solved to obtain the NEM predicted surface-averaged
current based upon the FDM flux solution utilizing corrected coupling coefficients. The corrected coupling
coefficients are determined demanding that the FDM and NEM predicted currents agree. In the radial
plane for hexagonal geometry, Equation (7.2-32) is modified to read as

. (7.2-68)

Hex Directions (Example - x direction):
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; (7.2-69)

Current Continuity,

(7.2-70)
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; (7.2-71)

Nodal Balance,

(7.2-72)

Odd Moment Balance,

. (7.2-73)

These equations are supplemented by the following auxiliary equation obtained from Equation
(7.2-62), 

. . (7.2-74)

Do note that for the u and v directions, the following mappings of surface currents occur, which impacts
the signs of the leakage terms on the RHS of the current continuity and odd moment balance equations:

(7.2-75)

Axial Direction:

Flux Discontinuity,

; (7.2-76)
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Current Continuity,

(7.2-77)

Nodal Balance,

; (7.2-78)

First Moment,

; (7.2-79)

Second Moment,

. (7.2-80)

For the z-direction, the same matrix structure as for Cartesian geometry results allowing
rearrangement of the associated two-node problem coefficient matrix to achieve reducibility. For the x, u,
and v-directions, the two-node problem for two groups can be reduced from a 16 x 16 matrix problem to
four 2 x 2 matrix problems and one 8 x 8 matrix problem. For four groups the 32 x 32 matrix problem can
be reduced to eight 2 x 2 matrix problems and one 16 x 16 matrix problem. The associated matrix problems
are solved analytically to reduce floating point operations required. Having solved the two-node problems,
the corrections to the coupling coefficients can be obtained as previously indicated in Equation (7.2-31).

7.2.3  Outer-Inner Solution Method for FDM Equations

The only large matrix that requires solution for the non-linear iterative method is the FDM
representation of the multi-group diffusion equation. Much work has been done on formulating,
understanding and implementing the iterative solution of this large, sparse matrix system. ATHAENA
takes advantage of this wealth of knowledge in its iterative solution implementation, utilizing an
outer-inner iterative strategy.

The “Outer-Inner Method” refers to outer iterations to update the fission source term and inner
iteration to approximately solve the resulting fixed source problem. The outer iterations correspond to a
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“Power Method.” This method can be applied to both Fixed Source Problems (FSP) and the Associated
Eigenvalue Problem (AEVP). Shortly it will be shown that both the fixed source steady-state and transient
problems are representable as FSP in ATHENA’s formulation. Although the AEVP involves additional
calculations for the eigenvalue, basically the iteration schemes for both problems are similar. We will
discuss the AEVP first.

Returning to Equation (7.2-8), the FDM representation of this equation in three-dimensional
Cartesian geometry within homogenous mode l can be expressed as

(7.2-81)

where the non-zero values of the coupling coefficients  are obtained via Equations (7.2-31) and

(7.2-32) and L denotes the total number of nodes. Substituting in the definitions for  and  into

Equation (7.2-81) and rearranging terms we obtain

. (7.2-82)

This equation can be written in terms of matrix notation spanning the spatial domain as

 (7.2-83)

where the “bar” over the node average flux value now denotes a column vector. Matrix  has a

seven-banded matrix structure for three-dimensional Cartesian geometry. In turn, the G (L x L) matrix
systems expressed by Equation (7.2-83) can be collected to write the following single (GL x GL) matrix
system

. (7.2-84)

The matrix  is block lower triangular in structure for that portion applicable to the fast groups.
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The outer-inner iteration process is summarized as follows: For the AEVP specified by Equation

(7.2-84), given an arbitrary initial vector , the outer iterations generate successive estimates for the

flux vector  by the process

(7.2-85)

where how the criticality constant (i.e., eigenvalue) is updated will be discussed later. The iterative matrix
associated with the outer iterations is

 . (7.2-86)

The properties of the iterative matrix  has a significant role in determining the convergence rate of the

power iterations7.2-10,7.2-11.

In solving Equation (7.2-85), advantage is taken of the structure of the  matrix. For the fast groups,

solving from low to high energy group number results in energy group decoupling. This implies that we
may solve a system of linear equations of the form

(7.2-87)

where

. (7.2-88)

For the thermal groups, ATHENA assumes the group fluxes for all other thermal groups except the
one being updated are known. This produces energy group decoupling, allowing Equation (7.2-87) to be
utilized. So called “scattering” iterations are then completed after all thermal groups’ fluxes are updated.
Stationary acceleration is employed to accelerate convergence of the scattering iterations.

7.2.3.1  Inner Iteration Acceleration

To solve Equation (7.2-87) we introduce the inner iterations. In this work we employ a Multi-Color
Point or Line SOR Method, depending upon problem geometry, for the inner iterations. Specifically, a
Red-Black Point or Line SOR method is used in ATHENA for two or three-dimensional Cartesian
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geometry, respectively. For one-dimensional Cartesian geometry, a direct matrix solve is utilized since the
group-wise A matrix is triangular allowing employment of Gaussian elimination.

Mathematically, this approach is a multi-splitting method and can be expressed as

(7.2-89)

where  vector spans nodes of color "p",

(7.2-90)

where

(7.2-91)

and non-square matrix equals rows of that span nodes of color "p",

, (7.2-92)

and

. (7.2-93)

Note that the group g and outer iteration count (q) indices have been suppressed for clarity in the

above equations. The matrix  is square and has either a diagonal structure for the point scheme or block

diagonal structure composed of tridiagonal blocks for the line scheme. This implies that the action of 

indicated in Equations (7.2-90) is simple to evaluate. A total of  inner iterations per outer iterations

are completed, this value determined such that the specified relative error reduction from the 0th iterative
error for the inner iterations is achieved.
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To a priori determine the value of the optimum relaxation parameter, ω and  [which are energy

group dependent but dependence notation has been suppressed], it is assumed that the iterative matrix
associated with this inner iterative method is symmetrizable. This is not true since the NEM corrections to
the FDM coupling coefficients invalidate symmetry; however, these corrections have been found to be

relatively small so the symmetrizable assumption is acceptable. Making this assumption, we can express ω

in terms of the spectral radius of the associated Gauss-Seidel iteration matrix, , as

. (7.2-94)

Clearly  with . Therefore, calculation of the spectral radius of the associated

Gauss-Seidel iterative matrix is the heart of this procedure. The following summarizes the details of the

computational procedure used in ATHENA to obtain an estimate of the value of ω, which is based upon

the DIF3D methodology7.2-11. The following steps are completed for each energy group:

Step 1. 

Starting with an arbitrary non-negative initial guess vector , complete at least ten Gauss-Seidel

iterations in solving

. (7.2-95)

Step 2. 

Following each iteration with m >10, estimate the upper and lower bounds of the spectral radii using

(7.2-96)

(7.2-97)

. (7.2-98)

Compute the corresponding relaxation factors given by
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(7.2-99)

(7.2-100)

. (7.2-101)

Step 3. 

Terminate iteration when either

(7.2-102)

or m equals a specified upper limit7.2-11,7.2-12. The optimum factor ω is then set to ω(m). This test forces

tighter convergence of ω when  is close to unity to ensure the required numerical accuracy is

achieved.

Step 4.

 Determine the number of inner iterations required for each outer iteration , such that the value

of  satisfies the following equation:

(7.2-103)

where

(7.2-104)

and  denotes the desired relative error reduction from the initial iteration to the end of -th iteration.

It is suggested that a very small number for  not be used since it may force excessive inner

iterations7.2-11.
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The advantages of these accelerations strategies are clear. The automated determination of the
optimum overrelaxation factors relieves users of the burden of the trial and error manner of specifying
optimum parameters for a large class of reactor models. In addition, substantial computational time can be
saved since the need to check the convergence of inner iterations has been removed by using a fixed
number of predetermined inner iterations for each energy group.

The outer iterations defined by Equation (7.2-85) are slow to converge, since the dominance ratio of
the iterative matrix, Equation (7.2-86), is close to one. Two complementary acceleration techniques are
utilized in ATHENANA to accelerate the outer iterations of the AEVP.

7.2.3.2  Outer Iteration Acceleration

The outer iterations for the AEVP are accelerated by using linear combinations of the previous
iterative vectors as now described. The Chebyshev polynomials are used to obtain the best linear

combinations when there is no knowledge of higher eigenvalues7.2-13. The method implemented is the

Chebyshev Semi-Iterative method7.2-10,7.2-11,7.2-12,7.2-14. In this method, the error vector associated with
the acceleration method is expressed in terms of a linear combination of the error vectors of the underlying
interactive method. Acceleration of the iteration is achieved by minimizing the error vector by appropriate
selection of the expansion coefficients, which is determined to be those associated with Chebyshev
polynomials. Further details of the mathematical background of this method can be found in the related

references7.2-10,7.2-11.

Since the rate of convergence in the AEVP is dependent on the dominance ratio , the

Chebyshev acceleration method7.2-10,7.2-11,7.2-12,7.2-14 can therefore be applied to iterations. It is given by

 (7.2-105)

provided that a suitable estimate of  is obtained. ATHENA follows the DIF3D approach to solve

the AEVP in which we accelerate the fission source Ψ 7.2-14, where Ψ is defined as

 . (7.2-106)

The accelerated iterative procedure can then be expressed as

(7.2-107)
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where

(7.2-108)

(7.2-109)

(7.2-110)

(7.2-111)

(7.2-112)

(7.2-113)

(7.2-114)

(7.2-115)

where n* is the outer iteration index where acceleration begins and p denotes the successive fission source

iterations employed  within a Chebyshev cycle (i.e., since last updating the estimate of ).

Note the dominance ratio  needs to be estimated in order for the scheme to work. This is

accomplished using the procedure implemented in DIF3D7.2-11 as now outlined.

Since an accurate estimate of  is not known when the outer iterations are commenced, a

“boot-strap” process is required. By performing a limited number of power iterations, a reasonable initial

estimate of  is obtained. Only when all but the first overtone mode are essentially damped out,
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high-order cycles based on accurate estimates of  are utilized7.2-11,7.2-15. More precisely, the

algorithm can be described in terms of four basic steps:

Step 1.

 A minimum of three power iterations are performed initially. The first Chebyshev acceleration cycle

is begun on outer iteration (n* + 1), where (n* + 1) is the smallest integer such that  for which the

dominance ratio estimate,  satisfies the following criterion;

where

(7.2-116)

. (7.2-117)

Step 2. 

Using  as the dominance ratio estimate for , the accelerated iterative sequence given by

Equations (7.2-108) and (7.2-109) is carried out for iterations  with . At first low degree

polynomials are applied repeatedly with estimates of the dominance ratio being updated continuously
according to

(7.2-118)

where

(7.2-119)

(7.2-120)
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and  is the Chebyshev polynomial of degree p-1 given by

. (7.2-121)

The polynomials are at least of degree 3 and are terminated when the error reduction factor
is greater than the theoretical error reduction factor

. (7.2-122)

The theoretical error reduction factor is the error reduction which would have been achieved if 

were equal to , the true dominance ratio. If  is greater than this, the acceleration cycle has

not been as effective as it should have been, so a new cycle is started using the updated dominance ratio

estimate, . Alternately, the polynomial degree will be terminated if the reduction in the L2 relative

residual of the diffusion equation

(7.2-123)

falls below a specified value.

Step 3. 

After the estimates for  have converged higher degree polynomials are applied.

Step 4.

 The outer iterations are terminated at outer iteration n if the following four criteria are met:

(7.2-124)
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(7.2-125)

(7.2-126)

(7.2-127)

where  are input parameters. The following meanings of the "normed" stopping criteria

should be noted:  is the L2 norm of the relative residual of the outer iterative equation,  is the L∞

norm of the true error of the fission source, and  is the L2 norm of the relative residual of the diffusion

equation. (Note that for the fixed source problem associated with a transient problem, the normalization
shown in the denominator of the expression bounded by  is changed to the L2 norm of the source.)

It should be noted that a modification to this basic scheme is made in the actual implementation in
ATHENA of the Chebyshev polynomial acceleration. That is, since the NEM corrections to the coupling

coefficients are dependent upon the flux solution, our matrix problem is truly non-linear since  and 

depend upon the flux solution. Since the non-linearity is weak, one can guess a flux solution, determine the

corrections to the coupling coefficients and appropriately modify  and , and solve for the flux. This

updated flux solution can then be used to reinitiate the cycle until both the NEM corrections to the

coupling coefficients and flux solutions converge. One way to handle these effects is to update the  and

 matrices after complete termination of the outer iteration process. This approach has a clear

disadvantage in that it requires large computational time to obtain converged solutions for NEM
corrections to the coupling coefficients and flux. An alternate approach is to update the coefficient matrix
with the corrections to the coupling coefficients during the Chebyshev acceleration process. In doing so, a
substantial reduction in computation time can be realized. The latter approach can be justified by observing
that the corrections to the coupling coefficients are relatively small perturbations to the original system
from a reactor physics point of view and hence, the entire Chebyshev acceleration scheme is not
jeopardized. This modified scheme is incorporated in our work in such a manner that the matrices are

updated just before a new Chebyshev polynomial acceleration cycle begins. Figure 7.2-2 summarizes the
overall nested iterative solution strategy used within the ATHENA code for each attempted advancement.
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This strategy has been demonstrated to be efficient and robust. A NEM non-linear iteration is completed
when specified maximum number of outer iterations is reached,.

7.2.4  Transient Problem

Under transient conditions, both the multi-group diffusion equation and delayed neutron precursor
equations must be solved. These equations, accounting for an external neutron source and utilizing six
precursor groups, are given by (suppressing  and t dependences for clarity)

(7.2-128)

(7.2-129)

where the notation is identical as before except as now noted

= neutron speed for energy group g

= fraction of prompt neutrons born into energy group g

= fraction of delayed neutrons for precursor group i born into energy
 group g

NEM Non-Linear Iterations

FDM Outer Iterations

FDM Scattering Iterations

FDM Inner Iterations

Figure 7.2-2 Overview of nested iterative solution strategy.
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= neutron precursor concentration in precursor group i 

= decay constant for precursor group i

= fraction of all fission neutrons emitted per fission in precursor group i

= total fraction of fission neutrons which are delayed.

Alternately, the ‘eigenvalue initiated’ transient equations can be obtained from Equations (7.2-128)
and (7.2-129) by setting  and by replacing  with  everywhere.

The neutron kinetics equations, Equations (7.2-128) and (7.2-129), involve differentials in space and
time. The time dependence is a difficult problem to treat in neutronics modeling due to the stiffness of the
associated equations. The time constants range from very small, associated with prompt neutrons, to very
long, associated with the longer lived precursors. ATHENA numerically treats the temporal dependence in
a manner that results in a FSP, which can be solved utilizing the methodology developed for the
steady-state FSP.

The first step in this conversion to a FSP is to discretize the time domain into discrete times {tn}and

to approximate the time derivative of the flux at time tn+l by a backward difference

 . (7.2-130)

This assures unconditional stability. Do note that spatial dependence notation has been and will
continue to be suppressed in the equations. 

To develop an expression for the precursors’ concentrations at time tn+1 in terms of the flux

, Equation (7.2-129) is solved utilizing the Integrating Factor method over time span [tn, tn+1] to

obtain

. (7.2-131)

To solve the above integral, a functional form for the time dependent neutron fission source must be
assumed over time span [tn, tn+1]. Consistent with the backward difference operator approximation for the

time derivative of the flux, the fission source is assumed to vary linearly between time-steps and is given
by
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. (7.2-132)

Incorporating this approximation into Equation (7.2-131) and rearranging terms, we obtain

(7.2-133)

where

(7.2-134)

. (7.2-135)

Now substituting Equations (7.2-130) and (7.2-133) into Equation (7.2-128) one obtains

(7.2-136)

where

(7.2-137)

In Equation (7.2-136) all cross-sections are evaluated at time tn+1. Inspection of Equation (7.2-136)

indicates it to be a FSP, with modified operators and source from the steady-state FSP. We refer to
Equation (7.2-136) as the transient FSP. Hence the application of NEM to the transient FSP and the
iterative solution of the resulting coupled equations can proceed exactly the same as for the steady-state
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FSP. As would be expected, the values of flux and adjusted FDM coupling coefficients at time  for

the 0th outer iterative step are based upon their values at time tn.

If we proceed in this manner, in the two-node problems spatial moments of  would

appear. As Equation (7.2-137) indicates,  is dependent upon  and .

The implication is that the expansion coefficients associated with the transverse integrated fluxes, obtained
from solution of the two-node problems, at the previous time tn must be saved. The same is true for the

precursor concentrations, which are treated like the flux for time dependent problems solved by NEM. This
would substantially increase the computer memory requirements.

To overcome this difficulty, further approximations are required in formulating the two-node

problems. Recognizing that the within node spatial dependence of  is associated with the

contributions from the delay neutrons and the external neutron source, that the external neutron source is
assumed to be constant within a node, and that these contributions of neutrons are small, one would expect

 within node spatial shape to have little impact on the solution. This justifies treating

 spatial dependence approximately. In ATHENA this approximate treatment is done in the

same manner as for the transverse leakages; that is, using a quadratic polynomial as indicated in Equation
(7.2-21). Now only node average values of the flux and precursor concentrations at time  must be saved.

The node average precursor values are solved for via back substitution using Equation (7.2-133) after the
node average flux has been computed.

This implementation does create one problem that must be addressed. Since different spatial
treatments are used at times  and , the solution of the steady-state FSP and the transient FSP, now

for steady-state conditions, will not agree. The practical consequence is that when one utilizes the
steady-state FSP solution to determine initial conditions for the transient FSP, the flux will undergo a very
mild transient with time even when the initial steady-state conditions are preserved. This annoyance can be
avoided by regrouping terms in Equations (7.2-136) and (7.2-137) as

(7.2-138)

where

(7.2-139)
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(7.2-140)

Equation (7.2-138) is recognized to be identical to the steady-state FSP except for the replacement of

 with the modified effective source . Under steady-state conditions,  equals  since all

the additional terms in Equation (7.2-140) cancel. This is true even for the moments of  that

appear in the two-node problems provided the within node spatial dependence is treated consistently for
the variables appearing in Equation (7.2-140) at times tn and tn+1; in particular, when they are all treated by

a quadratic polynomial as previously indicated by Equation (7.2-21) for the transverse leakages. The
implication is that the transient FSP under steady-state conditions will produce the same solution as
produced by the steady-state FSP. This approach has been implemented in ATHENA.

Since the values of node average flux at time tn+1, the unknowns, now appear in the modified

effective source, an iterative approach is required. This is easily accomplished within the context of the
non-linear iterative method of solving the NEM equations. Recall when solving the two-node problems,
node average fluxes are assumed known based upon the latest outer iterative values available for the FDM
equation’s solution. For transient problems, this corresponds to node averaged flux values at time tn+1,

which are precisely the values requires to evaluate the moments of  that appear in the two-node

problems. This approach is utilized within ATHENA to assure the steady-state FSP solution does not
“drift” when used as an initial condition in the transient FSP.

To improve upon the initial iterative estimate of the fission source and flux, thereby hopefully

minimizing the number of outer and inner iterations required to achieve convergence, the 0th outer iterative
estimates of both are determined utilizing a time extrapolated flux. Specifically, assuming an exponential

time dependence, the 0th iterative flux at time step n+1 is given by

(7.2-141)

where

(7.2-142)
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7.2.5  Neutron Cross Section Model

The inputs to the kinetics modules in ATHENA consist of neutron cross sections, boundary
conditions, control flags, control data, etc. Neutron cross sections are needed for each neutron energy

group and kinetics node and consist of the diffusion coefficient (D), absorption cross section (Σa), fission

cross section (Σf), the product of the mean number of secondary neutrons per fission and the fission cross

section (νΣf), and the scattering cross section for scattering into the neutron energy group from the other

neutron energy groups (Σsg‘g). Discontinuity factors for each face of the kinetics nodes are also needed for

each energy group. The user supplies the control information and the boundary conditions as part of the
required input data. The neutron cross sections are computed from a function selected from a set of built-in
functions or a user supplied function whose independent variables are weighted averages of ATHENA
hydraulic or heat structure variables. There are four built-in neutron cross section functions from which the
user can select or the user may supply his own function in the form of an external subroutine. The same
user specified function is used for the computation of the neutron cross sections for all kinetics nodes. The
coefficients in the first three built-in cross section functions for each of the cross sections are supplied
through user input and a set of coefficients for the neutron cross sections is called a composition. The user
defines a number of compositions and specifies which composition is to be used for the computation of the
neutron cross sections in each kinetics node in the reactor core model. The mapping of compositions to
nodes is accomplished through the use of composition figures. A composition figure specifies the
composition for all of the kinetics nodes in a single axial plane in the reactor model and composition
figures are required for each axial plane in the reactor model. The user may specify as many composition
figures as needed to describe the reactor and a composition figure may be assigned to more than one axial
plane in the reactor model. The user specifies the volumes and heat structures to be used in computing the
weighted averages of thermal-hydraulic variables as well as the values of the weighting factors. A set of
volume averaged properties consists of an average fluid density (or fluid vapor fraction depending on
which neutron cross section function is selected by the user), an average fluid temperature, and an average
poison density, while the average heat structure property is simply the average heat structure temperature.
The group of volumes and heat structures used to define sets of average thermal-hydraulic properties is
called a zone. One of the built-in cross section functions uses a single set of average properties in a zone
while the other two built-in neutron cross section functions use multiple sets of average volume and
average heat structure properties in a zone. The user defines a number of zones and specifies which set of
zone average thermal-hydraulic properties is to be used for the computation of the neutron cross sections in
each node of the reactor core through the use of zone figures. A zone figure specifies which zone is to be
used for the computation of the neutron cross sections for each node in an axial plane of the reactor. Zone
figures are required for each axial plane in the reactor model and the same zone figure may be specified for
more than one axial level. In addition to the weighted averages of hydraulic and heat structure variables,
the neutron cross section function uses the position of the control rods as another independent variable. A
control rod model is used to determine the positions of the control rods and to compute the control rod
variable needed by the neutron cross section function on each axial level in the reactor core. The three
neutron cross section functions that the user may select to compute the neutron cross sections and the
control rod model are described in the following section.
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7.2.5.1  RAMONA Neutron Cross Section Model

The first built-in cross section model is the RAMONA model. The RAMONA neutron cross section

model uses the neutron cross section parameterization from the RAMONA-3B7.2-16 code. The functional
form for the computation of cross sections is

(7.2-143)

where

= average void fraction in zone k

= average heat structure temperature in zone k

= heat structure reference temperature for composition n

= average moderator temperature in zone k

= moderator reference temperature for composition n

= average poison concentration in zone k

and zone k and composition n have been specified for kinetics node l and a set of coefficients , j = 1,

2, ..., 9, have been specified for cross section x. Each of the cross sections for each node is computed using
Equation (7.2-143). The nodal discontinuity factors are computed as

(7.2-144)

for each face x of node l where  and  are user input quantities.

7.2.5.2  HWR Neutron Cross Section Model

The second built-in cross section model is the HWR modela that was developed at Argonne National
Laboratory as part of the Heavy Water New Production Reactor project. The HWR feedback option uses a
different function to compute the neutron cross sections. Each cross section consists of two parts, a base
cross section that only depends on the control fraction, and a variable part that depends upon changes in the
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thermal-hydraulic properties from those defined for the base state. The base portion of the cross section x
in node l is computed from

. (7.2-145)

where composition n has been specified for node l. The controlled base cross section is computed by the
neutronics simulator for a control fraction of one and the uncontrolled cross section is computed with a
control fraction of zero. The variable portion of the cross section is computed from

(7.2-146)

where the neutron cross section is the sum of the base cross section and the change in the cross section

(7.2-147)

where

= base cross section of type x in node l

= change in cross section x in node l due to changes in the

thermal-hydraulic state of the zone to which node l corresponds

= control fraction in node l

= coefficient for change in cross section x of composition n due to changes
in average moderator temperature of volume region i

= change in average moderator temperature in volume region i of zone k

a. W. Yang, “Representation of Temperature Effects on HWR Nodal Neutron Cross Sections,” Intra-Laboratory 

Memo, to H. Khalil, Argonne National Laboratory, May 3, 1991.
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=

= average moderator temperature in volume region i of zone k

= average moderator temperature in volume region i for composition n at

base thermal-hydraulic conditions, e.g. full power steady state

Nv = number of volume regions in each zone

= linear coefficient in change of cross section x of composition n due to

changes in average moderator density in volume region i

= change in average moderator density in volume region i of zone k

=

= average moderator density in volume region i for composition n at base

thermal-hydraulic state

= quadratic coefficient in change of cross section x of composition n due to

changes in average moderator density in volume region i

= coefficient for change in cross section x of composition n due to changes

in average poison density in volume region i

 = change in average poison concentration in volume region i of zone k,

=

= average poison concentration in volume region i for composition n at base

thermal-hydraulic condition

= coefficient for change in cross section x of composition n due to changes
in average structure temperature of structure region i

= change in the average structure temperature in structure region i of zone k
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=

= average structure temperature in structure region i of composition n for

base thermal-hydraulic state

Ns = number of structure regions in each zone.

The nodal discontinuity factors for the HWR feedback option are computed using Equation (7.2-144). The
HWR cross section model allows the user to specify more than one set the averaged thermal hydraulic
properties per zone.

7.2.5.3  GEN Neutron Cross Section Model

The last built-in cross section model is the most general built-in cross section model and was

developed7.2-17 as part of the ATHENA code development project. The GEN cross section function uses a
form similar to the HWR formulation except that the variable portion of the cross section is defined for
three control states, active controlled, driver controlled and uncontrolled states. The GEN cross section
function is given by

(7.2-148)

where

= control fraction for active and driver portions of the control rods in node l

= base cross section of reaction type x for composition c for active

controlled, driver controlled, or uncontrolled states

= variation of cross section for reaction type x for composition c due the

changes in the thermal-hydraulic variables from the base
thermal-hydraulic state for active controlled, driver controlled, and
uncontrolled state

and composition c has been specified for node l.

The variations for the active controlled, driver controlled, and uncontrolled states are given by
Equation (7.2-146) where the coefficients a, b, c, d, and e are input separately for the active controlled,
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driver controlled, and uncontrolled states. The other differences between to HWR and the GEN
formulation are that the density variable in the variation of the cross section may be either the fluid mixture
density or the fluid void fraction and the variation of the structure temperature may be the difference of the
structure temperature and the reference temperature or the difference of the square roots of the structure
temperature and the reference temperature as in the RAMONA formulation. The RAMONA and HWR
formulations of the neutron cross sections may be manipulated into the GEN form. The nodal discontinuity
factors are also computed from Equation (7.2-148) except that the thermal-hydraulic variations are
identically zero and are therefore not included.

7.2.5.4  RBMK Neutron Cross Section Model

This neutron cross section model is intended for modeling of RBMK reactors. The cross sections are
computed by a subroutine supplied by the Russian Research Centre - Kurchatov Institute in Moscow. No
information is currently available as to how the neutron cross sections are computed in this subroutine.

7.2.5.5  USER Neutron Cross Section Model

The last neutron cross section model is the USER option. In this option, the user supplies an external
subroutine which computes the set of neutron cross sections and optional discontinuity factors for a single
node given the material type in the node determined from the composition maps, the region average
properties in the zone specified in the zone maps for the node, and the control fractions and insertion
directions for any control rods associated with the node. The user may also specify the values of up to four
additional variables in each node through the use of additional input data. These additional variables are
passed to the external subroutine and may be used by the user to represent the values of any variables that
may affect the neutron cross sections that are not computed by ATHENA (e.g., fuel burnup, xenon and
samarium concentration, etc.).

7.2.5.6  Computation of Zone Average Properties

All three neutron cross section models use averages of ATHENA thermal hydraulic variables,
volume quantities and heat structure quantities, as the independent variables in the neutron cross section
functions. The RAMONA model uses a set of three volume average properties in each zone, the zone

average vapor fraction, , the zone average moderator temperature, , and a zone average poison

concentration, , and a single average of heat structure quantities, the zone average heat structure

temperature, . The subscript k denotes the zone. These quantities are defined by

(7.2-149)

αgk Tmk

Bk

Tsk

αgk

Wik
α αgi

i Mk∈
∑

Wik
α

i Mk∈
∑

----------------------------=
7-65 INEEL-EXT-98-00834-V1



ATHENA/2.3
(7.2-150)

(7.2-151)

(7.2-152)

where

= average vapor/gas fraction in zone k

= vapor/gas fraction in volume i

= vapor/gas fraction weight factor for volume i in zone k

Mk = list of volumes for volume averages in zone k

= average moderator temperature in zone k

= moderator temperature weighting factor for volume i in zone k,

Tmi = moderator temperature in volume i
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= volume fraction of phase k in volume i (k = f for liquid and k = g for

vapor/gas) 

= density of phase k in volume i

Tki = temperature of phase k in volume i

= average poison concentration in zone k

= poison concentration weighting factor for volume i in zone k

Bi = poison concentration in volume i

= 106 times poison density in volume i divided by liquid density in volume i

= average structure temperature in zone k

= average temperature in structure i

= structure temperature weighting factor for structure i in zone k

Sk = list of structures for structure averages in zone k.

The user supplies the lists of volumes and heat structures to be used for the averages in each zone and
ATHENA computes the thermal-hydraulic variables needed to determine the zone average properties. The
same list of volumes is used for the three volume averaged quantities in each zone but different weighting
factors are used for each of the three averages. 

The other two built-in cross section models, the HWR cross section model and the GEN model, as
well as the user supplied external subroutine model, subdivide each zone into a number of regions and
define averages of volume and heat structure quantities for each region of a zone. The number of regions in
a zone for the computation of volume average properties may be different from the number of regions in a
zone for the computation of the heat structure average properties, but the number of volume regions and
the number of heat structure regions is the same for each zone. The region average moderator temperature,
the region average moderator density, the region average poison density, and the region structure
temperature are computed using equations like Equations (7.2-150), (7.2-151), and (7.2-152) respectively
except that the summations and weighting fractions are defined for a region in a zone rather than for the
entire zone. The HWR cross section model uses the average moderator density instead of the average
vapor fraction in the set of volume average properties while the GEN cross section model uses either the
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moderator density or the moderator void fraction depending upon which option the user specifies. The
average void fraction in each region is computed using Equation (7.2-149). The region average properties
are computed as

(7.2-153)

(7.2-154)

(7.2-155)

(7.2-156)

where

= average moderator temperature in volume region i of zone k

= moderator temperature weighting factor for volume j in volume region i
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Tmj = moderator temperature in volume j
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=  average moderator density in volume region i of zone k
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= fluid mixture density in volume j

=

= fluid density weighting factor for volume j in volume region i of zone k

= average poison concentration in volume region i of zone k

= poison weighting factor for volume j in volume region i of zone k

Bj = poison concentration in volume j

= 106 times poison density in kg/m3 divided by mixture density  in

volume j

= average structure temperature in structure region i of zone k

= structure temperature weighting factor for structure j in structure region i

of zone k

= average temperature in structure j

Sik = list of structures for structure averages in structure region i of zone k.

7.2.6  Control Rod Model

 Zero or more control rods may be associated with each axial stack of neutronics nodes The insertion
depth of the individual control rods is determined as the sum of the user input initial insertion depth and the
value returned by the control component (i.e., either a general table or a control block) associated with the
control rod. If no control component is associated with the control rod, it remains at its user specified
initial insertion depth. Control rods may be inserted from either the top or bottom faces of the reactor.

7.2.6.1  Computation of Control Fractions

 The control fractions for the kinetics nodes on each axial level is computed from the insertion depths
of the control rods. The control rods are sorted by the user into control rod groups where the rods in a
group have the same insertion depth, move at the same velocity, are controlled by the same control variable
or general table and have the same neutronics worth. The control rods may be inserted from either the top
or bottom of the reactor core. Each rod group may also represent full length or partial length rods and this
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must be taken into account when computing the control fractions. The control fraction for node n on axial
level l is given by

(7.2-157)

where

= control fraction for node n on axial level l

= control fraction for control rod group r in node n on level l

= number of control rods associated with node n

= list of rod groups to be used for node n.

The control fraction for a full length control rod inserted from the bottom of the reactor core for axial level
l is computed from

(7.2-158)

where

hr = insertion depth of the tip of the control rod group r measured from the end

of the reactor core through which the rod in inserted

hl = height of top of level l measured from the bottom of the reactor core,

hl-1 = height of bottom of level l measured from the bottom of the reactor core.

The control fraction for the rod inserted the same depth from the top of the reactor core is given by,

(7.2-159)

Cfn l,

Cfn l,
r

r Rn∈
∑

Nn
----------------------=

Cfn l,

Cfn l,
r

Nn

Rn

Cfl
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where

hN = height of top of level N measured from the bottom of the reactor core, i.e.,

height of reactor core

and the other variables are as defined above.

The computation of the control fractions for partial length control rods is similar to the computation
for the full length rods except that the partial rod consists of two pieces, a neutronically active portion
adjacent to the tip of the rod and a neutronically inactive or driver portion below the active portion. The
control fraction for the active potion of a partial length rod is computed by subtracting the control fraction
for the driver portion from the control fraction for the active portion. The control fractions for the two
pieces of the rod are computed from Equations (7.2-158) and (7.2-159) except that the insertion depth of
the driver portion is the insertion depth of the rod minus the active length of the rod. The formulas are

(7.2-160)

where 

= control fraction for control rod r on level l, based on the position of the tip

of the control rod computed from either Equation (7.2-158) or Equation
(7.2-159)

= control fraction for active portion of control rod group r,

= control fraction for driver portion of control rod group r.

The control fraction for the driver portion of the rod group inserted from the bottom of the reactor core is
computed as

(7.2-161)

and from

(7.2-162)
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for a partial rod inserted from the top of the reactor core where

lr = active length of control rod group r.
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7.3  Nuclear Detector Model

A nuclear detector model is needed to provide kinetics input to the control systems model. A detector
model can be built by the user using the capabilities of the control systems model but this method uses a
large number of control blocks and depletes the pool of control blocks that can be used to model the actual
control system. The detector model mimics the thermal radiation model in that the dectector ‘sees’ a user
specified region of the reactor core and responds (i.e., generates a signal) to the radiation emitted from that
region of the reactor. The model accounts for the fact that the radiation emanating from the source region is
attenuated by the material between the source and the detector and that the attenuation is a function of the
properties of the material between the source and the detector. These properties may be constant in time
such as for solid materials or may be time-varying such as for fluids. Nuclear detectors respond to several
types of radiation (i.e., neutrons and gamma rays), and the detector model allows the user to specify the
type of radiation from each source region and the source region can consist of several kinetics nodes.

7.3.1  The Model

The detector model is based on a ray-tracing algorithm, The contribution of each source node in the
source region to the detector response is described by a contribution factor CFi for source Si in kinetics

node i. The detector response is the sum of the responses from each source node in the source region,

(7.3-1)

where NS is the number of source nodes ‘seen’ by the detector. The contribution factors CFi should be

normalized so that they sum to one,

response SF CFi Si×
i 1=

NS

∑=
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 . (7.3-2)

The multiplier SF is a scale factor that can be used to convert the source units (usually watts) to the
detector response units (usually amps).

The contribution factors are determined assuming some distribution of material between a source
node and the detector and by assuming that the materials between the source node and detector attenuate
the response. The attenuation is affected by changes in the properties of these materials (e.g., density or
temperature). For this model, it is assumed that the change in attenuation for each material region between
a source node and detector can be modelled by an exponential based on the material property.

(7.3-3)

where NM is the number of material regions between the source node and detector, µj is the attenuation

coefficient for the material in material region j, Xj is the instantaneous value of the material property in

material region j, and  is the reference value (i.e., the condition where CFi was evaluated) of the

material in material region j. The detector response for all source nodes becomes,

(7.3-4)

where there may be a different number of material regions between the source node and detector for each
source node.

CFi
i 1=

NS

∑ 1.0=

attenuation µj Xj Xref
j–( )

j 1=

NM

∑exp=

Xref
j

response SF CFi Si µi j, Xi
j Xi ref,

j–( )
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NM i,
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i 1=
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8  Special Techniques

The mass from the state relationship is compared to the mass from the continuity equation, and the
difference is a measure of the truncation error inherent in the numerical solution. This is the main method
used to control the time step and thus control the truncation error. Other methods are also used.

Special techniques are also used to mitigate mass and energy errors. These are (1) a second
evaluation of the semi-implicit scheme equations using non-linearized time derivatives, (2) velocity
flip-flop situations, and (3) noncondensable gas appearance situations.

Special methods are provided in the code for use in obtaining initial conditions. These methods are
based on the transient solution algorithm but make use of an accelerated thermal transient solution
technique in order to shorten the computer time required to achieve steady-state. Generic control
component options are available to allow the user to minimize the time, effort, and cost to achieve
steady-state.

8.1  Time Step Control

A variety of checks on solution acceptability are used to control the time step. These include material
Courant limit checks, mass error checks, material properties out of defined ranges, thermodynamic fluid
property errors, excessive extrapolation of state (thermodynamic fluid) properties in the metastable
regimes, phase appearance/disappearance checks, or large pressure changes in a volume when
noncondensable appears.

The material Courant limit check is made before a hydrodynamic advancement takes place. Thus, it
may reduce the time step, but it does not cause a time step to be repeated. All of the other checks may
cause all or part of the time advancement to be repeated at a smaller time step. The material Courant limit
is evaluated for each hydrodynamic volume using the phasic volume velocities and the phasic volume
fractions, and it is given by

 i = 1, 2, ..., N . (8.1-1)

The N volumes are divided into five subsets, i.e., the 1st, 6th, 11th, ... volumes belong to the first subset,
the 2nd, 7th, 12th, ... volumes belong to the second subset, etc. The minimum Courant limits for each of
the five subsets are rearranged in ascending order, i.e.,

. (8.1-2)

∆tc( )i ∆xi 
max αfi

n αgi
n,( )

max αfi
n vfi

n αgi
n vgi

n,( )
----------------------------------------------------=

∆tc
1  ∆tc

2  ∆tc
3  ∆tc 

4  ∆tc
5≤≤≤≤
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Thus,  is the minimum Courant limit for all the volumes. This is the number printed at each major

edit under “CRNT. DT =”. For the semi-implicit scheme,  is used for limiting the time step size. Thus,

partial violation of the material Courant limit is allowed for this scheme. For the nearly-implicit scheme,

20 times  is used for limiting the time step size for the transient mode, and 40 times  is used for

limiting the time step size for the steady-state mode.

The mass error check is made when the time step solution is nearly complete. If excessive mass error
is detected, the time step is repeated at a reduced interval. Two types of mass error measures are computed.
The first one is designed to check the validity of the density linearization and is defined as

i = 1,  2, ..., N (8.1-3)

where ρmi is the total density of the i-th volume obtained from the mass continuity equation, and ρi is the

total density of the i-th volume computed from the state relationship. The second one is a measure of
overall system mass error and is given by

. (8.1-4)

If either εm or εrms is > 8 x 10-3, the time step is rejected and repeated with one half of the time step

size. Otherwise, the time step is accepted, and the next time step size is doubled if both εm and εrms are

< 8 x 10-4. The value of εm for each system is shown in the individual system major edits (ERR.EST). The

maximum of εm for all systems and  εrms is shown in the major edits Time Step Summary (ERR.EST) and

minor edits/plots (ERRMAX).

The first type of mass error measure [(ρmi - ρi)Vi] is added for each volume at each time step. This is

the same as computing the mass flowing in through junctions connected to time-dependent volumes,
subtracting the mass flowing out through junctions connected to time-dependent volumes, and adding the
difference between the previous time step mass and the current mass. This mass error is accumulated for
each system and is shown in the system major edits (MASS ERROR) and minor edits/plots (SYSMER).
This mass error is accumulated for all the systems and is shown in the Time Step Summary (MS.RED) and
minor edits/plots (EMASS). The total mass in each system is shown in the system major edits (MASS) and
minor edits/plots (SYSTMS). The total mass for all systems is shown in the Time Step Summary
(TOT.MS) and minor edits/plots (TMASS). At any given time, the following equation holds:
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. (8.1-5)

At any point in the solution flow, if a thermodynamic fluid property is found to lie outside the
defined range, the time step is halved and repeated. This halving process proceeds until the property is
within range or the user-specified minimum time step is reached. If the minimum time step is reached
without obtaining a valid solution, the code calculation is terminated; the last time step is repeated with a
diagnostic dump printed, and the program stops at the completion of the advancement. This same
procedure is applied for all thermodynamic fluid property or extrapolation failures. The liquid metastable
checks used are specific volume less than or equal to 0 and liquid temperature greater than 50 K above
saturation temperature. The vapor metastable checks are vapor specific volume less than or equal to 0 and
the vapor temperature less than 50 K below saturation temperature. The vapor 50 K limit is used for the
vapor only case, but not for the noncondensable/vapor case which uses iteration. There is also time step

control based on problems with void fraction (αg), noncondensable quality (Xn), and mixture density from

the phasic continuity equations (ρm). Advancements that result in αg and Xn being slightly less than 0.0 or

slightly greater than 1.0 are allowed, and the variable is reset to 0.0 or 1.0. Advancements that result in
values much less than 0.0 or much greater than 1.0 are considered an error, and the time step is repeated.
The cutoff points are based on a functional relationship. This relation is tied to the mass error upper limit (8

x 10-3). Advancements that result in ρm being < 0 are also considered an error and the time step is repeated.

In addition, if too much of one-phase appears (more than a typical thermal boundary layer thickness)
starting from a single phase state, an error is assumed to have occurred, and the time step is repeated. In
addition, there is a time step control based on the change in the pressure in a volume during an
advancement, which is used whenever noncondensable gas first appears in a volume. This time step
control algorithm causes the code to repeat a time step if the change in pressure during a time step exceeds
the old-time value, the new-time value, or 50,000 Pa. This time step control has the effect of allowing the
pressure to change by no more than a factor of two during a time step.

mass at
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calculation

+ mass flowing in
through junctions

connected to
time dependent

volumes

– mass flowing out
through junctions
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time dependent

volumes

= mass at
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+ cumulative
mass error
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8.2  Mass/Energy Error Mitigation

The semi-implicit numerical scheme described in Section 3.1.3 and Section 3.1.4 has two

calculations of the new-time variables αg, Ug, Uf, and Xn. These variables are first calculated in connection

with a linearization of all the product terms involved in the time derivatives and are referred to as tentative
new-time variables [see Equations (3.1-88) through (3.1-92)]. They are denoted by a tilde in Section 3.1.3
and Section 3.1.4. This first calculation uses a numerically conservative form for all flux calculations of

mass and energy, but because the products in the time derivatives are linearized, the quantities αgρg, αfρf,

αgρgUg, αfρfUf, and αgρgXn are not numerically conserved. These tentative new-time values are only used

to evaluate the interphase heat and mass transfer terms to be used in the second evaluation of the basic
equations. In this second evaluation of the basic equations [see Equations (3.1-110), (3.1-112), (3.1-113),
(3.1-115), and (3.1-116)], the products appearing in the time derivatives are not linearized. This second
step also uses the numerically conservative form for the flux terms. Hence, the final end of time step values
have been calculated using a consistent and numerically conservative form of differencing. The truncation
errors in the linearization procedure may produce errors in the solution for pressure, phasic specific
internal energies, and void fraction. Since the state is computed from these basic variables, the resultant
density may have some error. This error is used in the time step control presented in Section 8.1.

There are mass and energy errors that the numerically conservative form of differencing cannot
remove. The convective terms in the field equations are computed with donored properties determined by
the direction of phasic velocities. There are times that the final velocities may differ in directions from the
explicit velocities used to define the donored properties. This may result in mass/energy errors due to
incorrect properties used in the numerical scheme. The term velocity flip-flop refers to the situation in
which the final velocities and the explicit velocities differ in sign. In the ATHENA numerical scheme, the
pressures and final velocities are calculated using the donor properties based on the explicit velocities (see
Section 3.1.3 for the semi-implicit and Section 3.1.5 for the nearly-implicit). The velocity flip-flop implies
that inconsistent donor properties were used for the pressure computation and the final mass/energy
computation. This may result in bad velocity and energy solutions and large mass errors. Thus, a

mitigation scheme is employed to detect errors of this type. Let , , , , , and

 be the junction liquid fraction, liquid density, liquid specific internal energy, void fraction,

vapor/gas density, and vapor/gas specific internal energy, respectively, based on the explicit velocities, and

let  and  be the same variables based on the final velocities. A velocity

flip-flop has occurred when one of the junctions in a system satisfies the following condition:

. (8.2-1)
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Under such circumstances, the time step is repeated with the same time step size using the donor properties
based on the previously calculated final velocities.

Another situation that may cause excessive mass and/or energy errors is when a noncondensable gas
first appears in a volume. Because the linearized phasic properties are evaluated at the state existing at the
beginning of an advancement, the derivatives of the phasic properties with respect to the noncondensable
gas quality will be zero since there is no noncondensable gas in the volume at the beginning of the
advancement. The convection of noncondensable gas into the volume during the advancement will result
in an inconsistent state at the end of the advancement because the derivatives needed for the computation
of a consistent state are identically zero. The inconsistency may be manifested as a large mass error where
the noncondensable gas fails to appear in the volume even though the flux of noncondensable gas into the
volume is positive. The inconsistency may also be manifested as an unphysically high vapor temperature
when noncondensable gas first appears in a volume. This inconsistency is corrected by repeating the time
step advancement with the same time step size when noncondensable gas first appears in a volume. This is
done for both the semi-implicit scheme and the nearly-implicit scheme. The code checks for this situation
at the end of every advancement if the noncondensable gas model has been activated by the user. The
situation is detected whenever the noncondensable quality in a volume is zero at the beginning of the
advancement and the flux of noncondensable gas into the volume during the advancement is greater than a
small noncondensable source term. This term (can be zero) was determined from tests of thought
problems, separate effects calculations, integral effects calculations, and plant calculations. The
noncondensable quality and vapor fraction that would result from the flux of noncondensable gas into the
volume is estimated from an explicit mass balance on the vapor phase in the volume. The estimated
noncondensable gas quality is then used in the computation of the derivatives of the phasic properties. The
estimated noncondensable gas quality and vapor fraction are also used in the construction of the linearized
conservation equations instead of the beginning of advancement quantities. The modified linearized
conservation equations are then used to compute the end of advancement quantities as described
previously. The time step size used for the repeated advancement is the same as that used for the original
attempted advancement unless the pressure change in the cell is too large. The time step control based on
the change in the pressure described in Section 8.1 is activated for volumes in which noncondensable gas is
first appearing. The time step control based on pressure may result in multiple time step repeats with
smaller and smaller time steps when a noncondensable gas first appears in a volume. 

8.3  Steady-State

A steady-state initialization capability is included in ATHENA. With this capability, the transient
solution algorithm is continually monitored to determine the achievement of a steady-state. During this
process, convergence criteria are calculated and used in the steady-state testing scheme. These
convergence criteria are related to an overall calculational precision. This overall precision is the result of
combining both the precision of the transient solution algorithm and the standard tolerance of the
thermodynamic state algorithm. The following discussion describes the fundamental concepts of tests to
detect steady-state during transient calculations.

8.3.1  Fundamental Concepts for Detecting Hydrodynamic Steady-State During
8-5 INEEL-EXT-98-00834-V1
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Transient Calculations

The fundamental concept of steady-state is that the state of a reactor system being modeled does not
change with respect to time. In the hydrodynamic solution scheme, three terms can be monitored whose
variation in time include the variation of all of the other terms. These three terms are the thermodynamic
density, internal energy, and pressure. Furthermore, these three terms can be combined into a single-term,
enthalpy. Hence, monitoring the time variation of enthalpy is equivalent to monitoring the time variation of
all of the other variables in the solution scheme. For each volume cell in the system model, the enthalpy
can be written as

(8.3-1)

where subscript i denotes the i-th volume element, hi is the volume element specific enthalpy in units of

energy per unit mass, and Vi is the element volume. Since volume is constant, Equation (8.3-1) can be

simplified as

. (8.3−2)

The rate of variation with respect to time of Equation (8.3-2) can be expressed numerically as

. (8.3-3)

Absolute hydrodynamic steady-state occurs when Equation (8.3-3) is zero for each of the volume
elements in the modeled system.

In order to simplify the task of detecting steady-state, a system mean enthalpy can be expressed as

. (8.3-4)

A system mean rate of change can also be formulated as
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. (8.3-5)

However, since the rate of change in any volume element can be positive or negative, these terms
would tend to cancel. Hence, a better formulation for the mean rate of change is a mean square summation
that can be written as

. (8.3-6)

During the course of the problem solution, Equation (8.3-6) can be used to monitor the system
approach to steady-state because, as each volume element approaches steady-state, its rate of change goes
to zero and drops out of the summation. The detection of absolute steady-state is therefore relatively
simple, since the calculations need only be monitored until Equation (8.3-6) becomes zero. However,
another property of Equation (8.3-6) is that it will fluctuate wildly, varying between small and large
magnitudes. These fluctuations decrease in magnitude as the calculations proceed toward steady-state.
Hence, Equation (8.3-6) is not a well-behaved function, and it is therefore difficult to monitor its behavior.
However, a well-behaved function can be curve-fitted to the results of Equation (8.3-6) over reasonable
time intervals. An exponential function is of this type; and if

(8.3-7)

the coefficients α, β, γ, and φ may be computed by the method of least squares over any reasonable time
interval greater than four time steps. Equation (8.3-7) has the property that it can increase to large values at
small values of time and then decrease to small values as time increases and the system approaches
steady-state. Equation (8.3-7) represents the time-smoothed root mean square (RMS) rate of change in
system enthalpy.

Because the user must provide boundary conditions, controls, or trips to guide the transient solution
to steady-state, it may not be possible to achieve an absolute steady-state. For example, a steam generator
water level control may be modeled so that the water level oscillates between high and low set points. In
addition, since numerical schemes are inexact, it may only be possible to calculate absolute steady-state

within a small limit of precision. For this kind of fluctuating average steady-state, the RMS  will
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ATHENA/2.3
approach a constant, positive, nonzero value. As a result, an additional method must be used to detect an
average steady-state over limited time intervals.

If the system  is varying with time over the interval t1 < tn < t2, its variation can be expressed

approximately in the form of a straight line such that

. (8.3-8)

If the system is approaching an absolute steady-state, then the line rate of change will be zero and

Equation (8.3-8) will give the system time average (ρh) such that

(8.3-9)

where the averaging is over the interval t1 < tn < t2.

The second testing method consists of monitoring the system (ρh)n at the completion of each
successful time step and, at reasonable time intervals, solving for the straight line coefficients a and b using
the method of least squares.

In performing the method of least squares, the mean system enthalpy is computed at the successful

completion of each time step in the interval t1 < tn < t2, and an equation expressing the sum of the squares

of the differences between ρhn and Equation (8.3-8) can be written as

. (8.3-10)

The coefficients a and b can then be calculated by the method of least squares.

A measure of the RMS fluctuation of (ρh)n with respect to the line of Equation (8.3-8) can also be
computed using the mean square form of Equation (8.3-10), where

. (8.3-11)
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The RMS fluctuation then represents a measure of the typical difference between the mean system
enthalpy and the line of Equation (8.3-8). However, the coefficients a and b cannot be calculated with any
better precision than the overall precision of the solution scheme for the entire system.

8.3.2  Calculational Precision and the Steady-State Convergence Criteria

In the ATHENA solution scheme, at the successful completion of calculations over a time step, three
fundamental variables are computed for each volume element in the system modeled. These variables are

1. , the thermodynamic density of the volume substance, where subscript m denotes the

solution by conservation of mass.

2. , the thermodynamic specific internal energy of the volume substance resulting from

conservation of energy.

3. , the thermodynamic pressure of the volume substance resulting from the combined

solution conserving momentum, mass, and energy.

The thermodynamic pressure, phasic specific internal energies, and vapor/gas volume fraction are
used to compute the state using a set of properties tables. In the resulting calculations, a thermodynamic

density ρn+1 is calculated corresponding to the solution results. If the pressure and overall specific internal
energy are preserved, then the precision of the calculations can be defined as

(8.3−12)

for each volume element in the system. If the calculations were exact, then Equation (8.3-12) would be
zero. However, the properties tables are limited in precision to a tolerance of + 1 in the fifth significant
figure. In statistical terminology, the mean expected precision would be approximately + 5 in the sixth
significant figure. If the mean expected precision is considered to be a standard precision, an approximate
expression can be written in terms of the properties table density as

(8.3-13)

which is approximately + 5 in the density sixth significant figure and which represents the best expected
precision for the calculational scheme.

In the steady-state testing scheme, the precision of the volume enthalpy can be written as

(8.3-14)
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or

. (8.3-15)

Similarly, the precision of the rate of change in volume enthalpy can be written as

(8.3-16)

which simplifies to

. (8.3-17)

For the entire system at the current time step, a statistical precision can be defined where

(8.3−18)

for the system mean enthalpy and where

(8.3-19)

for the system rate of change in enthalpy.

Simple mean differences for the entire system can also be written as
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(8.3-20)

for the system mean enthalpy and as

(8.3-21)

for the system rate of change in enthalpy.

The relationship between the mean difference and precision terms defines the uncertainty
characteristics of the overall solution scheme. From Equations (8.3-18) through (8.3-21), it is obvious that

-εη  <  δη  <  εη (8.3-22)

where subscript η denotes the particular term, ρh or , being considered. In particular, if εη is small,

it can be concluded that calculations are made with a high degree of precision throughout the entire system

modeled. If the mean difference term is such that δη ~ 0, then the overall system solution is said to be

unbiased. This means that the overall system mass, energy, and momentum are precisely conserved.

However, if δη ~ εη, then the overall system solution is said to be biased. This means that if Equation

(8.3-22) is true and δη < 0, then the overall system solution behaves as if it were losing mass, energy, or

momentum. If δη > 0, then the system solution behaves as if it were gaining mass, energy, or momentum.

In ATHENA, the size of the calculational time steps are controlled to maintain a high degree of precision
which, in turn, limits the system bias. However, the characteristics just described can have an effect in
determining time-average steady-state.

Since the time-average straight line test defined by Equation (8.3-6) is conducted over a time
interval, time-average precision and mean difference terms must be calculated over the same time interval
using the relationships
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(8.3-23)

(8.3-24)

(8.3-25)

(8.3-26)

where the averaging is over the time interval, t2 - t1, and the summation terms n1 and n2 denote the number

of time steps taken over the interval.

Equations (8.3-23) through (8.3-26) represent the precision of the actual calculations relative to the
thermodynamic state algorithm. These equations have the characteristic that if the system approaches
absolute steady-state, both Equations (8.3-23) and (8.3-24) will become very small. Since the property
tables are limited in precision, it is useless in a practical sense to continue calculations if absolute
steady-state is achieved with a precision better than that for the properties tables. This criterion can be
defined by considering equations similar to Equations (8.3-23) and (8.3-24) but written in terms of the
properties tables standard precision. These equations can be derived by simply substituting Equation
(8.3-24) for the density difference term in the equations leading to Equations (8.3-23) and (8.3-24).
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The steady-state convergence criteria can then be defined by combining the calculational and
standard precisions such that

(8.3-27)

for the system mean enthalpy, and

(8.3-28)

for the system rate of change in enthalpy.

Equations (8.3-27) and (8.3-28) represent the steady-state convergence criterion. It can be said that,
within the limits of calculational and properties precision, time-average steady-state is achieved when the
mean rate of change in system enthalpy is within the limits of

(8.3-29)

where “a” is the mean rate of change in system enthalpy given by Equation (8.3-8). If Equation (8.3-29) is
true and if Equation (8.3-7) is such that

(8.3-30)

then absolute steady-state is achieved. If Equation (8.3-29) is true and

(8.3-31)

then the system is fluctuating and time-average steady-state is achieved.
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8.3.3  Steady-State Testing Scheme, Time Interval Control, and Output

In the steady-state testing scheme, the concepts discussed for detecting steady-state are used, and
calculations are performed over time intervals composed of a number of time steps. Because the nature of
each problem is different, a systematic method of varying the test time intervals is performed.

These tests are performed in two parts. First, the system model overall state and rate of change in
state are monitored by evaluating Equations (8.3-1) through (8.3-5) and including these results in the
least-square terms for Equation (8.3-6). At time intervals computed internally, Equation (8.3-6) is
evaluated; and the current system rate of change is determined. If the rate of change in state is increasing,
then a divergent condition is indicated. If the rate of change in state is decreasing or zero, then a convergent

condition is indicated. Second, if a convergent condition is indicated, then calculations are performed to
determine the system average state and average rate of change in state over the internally computed time
intervals. These time-averages are formed by obtaining successive overlapping least-square solutions for
Equation (8.3-7). These successive time-average values are compared, and the achievement or
nonachievement of a time-average steady-state is determined. In performing these tests, the calculational
precision is accounted for by using Equations (8.3-12) through (8.3-29).

In the steady-state scheme, each time a solution for Equation (8.3-6) is obtained, the overall-state and
steady-state convergence test results are printed. This printout is composed of current time results and time
smoothed results integrated over the test time interval. The current time results are (a) the state and rates of
change in state resulting from Equations (8.3-4), (8.3-5), and (8.3-6); (b) the current time uncertainties
resulting from Equations (8.3-18) through (8.3-21); and (c) the current time mean and root mean square
(RMS) mass errors. The time-smoothed results that are printed are the current time evaluation of Equation
(8.3-7) and the resultant coefficients of Equation (8.3-7) determined by the least-squares solution over the
time interval from t1 to the current time TIMEHY. The time, t1, corresponds to the time at the successful

completion of calculations for the first time step after problem initiation. For example, if the problem is a
NEW problem, then t1 corresponds to

t1  =  0 + ∆t1 (8.3-32)

where ∆t1 is the first successful time step. If the problem is a RESTART problem, then t1 corresponds to

t1  =  TREST + ∆t (8.3-33)

where TREST is the time of restart and ∆t is the first successful time step after restart. If the results of the
overall state tests indicate a convergent condition, then time-average tests are initiated.

The time-average tests consist of approximating the overall state with a set of three straight lines
where each test line is fitted to the calculational results over successive test intervals. The time rates of
change of these test lines are then monitored to determine time-average steady-state. In the testing scheme,
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when the time-average tests are initiated, calculations continue until the successive test time interval is
exceeded. At this time, the first test line, Line A, is defined and its results are printed. Calculations then
continue until the next successive test time interval is exceeded. At this time, the second test line, Line B,
is defined for the second test interval and the third test line, Line C, is defined for the combined first and
second test intervals. The results for the three test lines are then printed, and tests are performed to
determine the achievement of time-average steady-state. If steady-state has not been achieved, then test
Line A is reset to Line B, and the process is repeated until steady-state is achieved.

In the printed edit for time-average steady-state tests, the results for each of the three test lines are
printed. The test line results are obtained by curve fitting Equation (8.3-8) over each of the line test
intervals. The results printed are the endpoints of Equation (8.3-8) evaluated at the test interval start and
end times and the time rate of change of Equation (8.3-8). Also printed are the time-average uncertainties

from Equations (8.3-23) through (8.3-26), the RMS fluctuation of system mean ρh about the line from
Equation (8.3-11), and the mass error integrated over the line test interval.

In performing both the overall and time-average sets of tests, calculations proceed through a logic
scheme to perform tests that monitor the solution scheme’s approach to steady-state. After completing the
logic scheme calculations, the steady-state conclusions and next course of action are printed. This printout
is composed of statements of the mode of convergence and the state of the system in alphanumeric terms.
These statements are defined as the calculations proceed through the logic scheme. To prevent excessive
printout during the overall state convergence tests, the first test for overall convergence is not performed
until the completion of ten successful time steps. At this time, a current test time interval is initialized as

∆tcur = TIMEHY - t1. If this test indicates a divergent condition, then the test time interval is increased and

the test procedure is repeated. To increase the test time interval, three tests are performed. First, the current
test time interval is halved and the time t2 is estimated as

. (8.3-34)

Then, Equation (8.3-7) is evaluated as y(t2). If y(t2) is greater than the current value of y, then the

time t2 is reset to

t2  =  TIMEHY + ∆tcur (8.3-35)

and Equation (8.3-7) is reevaluated, which results in resetting y(t2). If y(t2) is again > y, then the time t2 is

again reset to

t2  =  TIMEHY + 2∆tcur . (8.3-36)

t2 TIMEHY 1
2
---∆tcur+=
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In any case, the test time interval is expanded by either maintaining, halving, or doubling the current
test time interval based on a projected estimate of the current time-smoothed convergence function. This
test procedure is then successively repeated until a convergent condition is calculated.

To provide efficiency for the time-average testing scheme, upon the first occurrence of an overall
state convergent condition, the time-average testing scheme is activated and the test time interval is
redefined by estimating the time interval over which a 10% change in state will occur. This time interval is
approximately

. (8.3-37)

However, to prevent excessively small or large intervals, the time interval is limited such that 10 ∆t <

∆tc < 100 ∆t, where ∆t is the current calculational time step. The calculations for the time-average scheme

then proceed with each successive test time interval specified 10% larger than the time interval just
completed. As the calculations progress and approach steady-state, the line segments approach a constant
value within the steady-state convergence criteria. When this condition is met, the test time interval is
doubled. If this condition is recursively maintained for two more successive test intervals, then a final
steady-state has been achieved and the calculations are terminated. If the line segment tests indicate the
solution is diverging from steady-state, the results of the time-average tests are discarded. When the
conditions of Equation (8.3-7) again become true, the time-average tests are reinitiated, and the procedure
is continued until steady-state is achieved.

A user-control over termination of advancements toward steady-state is available as part of the time
step control options. The control can be set to force continued advancements regardless of the steady-state
termination algorithm up to a specified time, then allow automatic termination during a following time
period.

8.3.4  Heat Structure Heat Conductance Scheme for Steady-State

In both the steady-state and transient solution schemes, the same transient heat transfer algorithm is
used. However, in the steady-state scheme, the heat structure heat capacity data input by the user are
ignored, and this term is evaluated as an artificially small number such that

(8.3-38)

where ρCp is the volumetric heat capacity, ∆x is the heat structure mesh interval, k is the heat structure

thermal conductivity, and ∆thc is the heat conduction scheme calculational time step. Equation (8.3-38)

corresponds to the explicit stability criteria for a transient numerical heat conduction scheme.
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In a transient solution scheme, the volumetric heat capacity is treated analogously to a thermal

inertia, and its magnitude determines the characteristic response time of the conduction solution. For

example, ρCp is typically quite large, on the order of 105 J/m3K or larger. Hence, a large value of ρCp

results in a characteristic response time much greater than the hydrodynamic response time. Indeed,
hydrodynamic steady-state can be approximately achieved in reasonably short calculational times before
large heat structures have even begun to respond.

By making the value of the volumetric heat capacity small, the characteristic response time is made
small and on the order of or less than the hydrodynamic calculational time step. The resultant solution
would therefore be equivalent to a steady-state solution that is damped and stabilized by a small thermal
inertia. Hence, fluctuations of the heat structure rate of change in state are on the order of or less than the
fluctuations of its hydrodynamic boundary conditions. As a result, the heat structure solution scheme will
achieve time-average steady-state at approximately the same time as time-average hydrodynamic
steady-state.

8.3.5  Interrelationship of Steady-State and Transient Restart-Plot Records

During the course of the calculations, restart-plot records are written at the frequency specified by the
user. When the code determines that steady-state has been achieved, a restart-plot record is written
unconditionally. Subsequent problems can then be run as restarts using any of these restart records.
However, the code will treat the restart records differently, depending on the type of problem using the
restart record.

If a transient problem is being run by restarting from a steady-state restart record or, conversely, if a
steady-state problem is being run restarting from a transient restart record, the restart is treated as a new
problem. In this case, only the restart record at which the problem restarts is written and used for initial
conditions. The code time step counters, statistics, and problem simulation time are reset to zero, and
additional restart-plot records are written as the problem progresses.

If a steady-state problem is being run restarting from a steady-state restart record or, conversely, if a
transient problem is being run restarting from a transient restart record, then the restart is treated as a
continuation of the problem. In the continuation case, the previous restart-plot records up to the point of
restart are preserved; and additional records are written as the problem progresses.

8.3.6  Energy Discrepancy

The default code contains a discrepancy when checking the steady state by means of an energy
balance. The default code should add the form loss (code calculated abrupt area change loss and
user-supplied loss) dissipation to the phasic energies. This dissipation was removed in RELAP5/MOD2
because of temperature problems (i.e., overheating), and thus it is not present in ATHENA. The dissipation
can be activated by the user in the input deck, however the user is cautioned that temperature problems
may occur.
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8.4  Self-Initialization

8.4.1  General Description

Obtaining a desired, steady-state condition for a ATHENA plant model often requires considerable
time and effort on the part of the analyst. Typically, this process involves successive calculations involving
a trial-and-error approach in adjusting various input data. While the ATHENA code can compute a
steady-state condition for a particular set of boundary conditions, this steady-state may not match all
parameters measured in the plant due to the particular nodalization chosen by the analyst, inherent
inaccuracies in code models of the physical processes, inability to model geometric details, etc. The
self-initialization option is designed to reduce the time, effort, and cost to achieve a steady-state for a given
ATHENA plant model to more nearly match plant data if necessary.

The strategy of the scheme is to automate the control aspects of the problem and to significantly
reduce the computational time needed to reach a steady-state. The concept retains the conventional
approach of conducting a transient calculation that is driven to a desired steady-state condition.

Automation of plant model control is effected by a generic set of controllers that mimic an actual
plant control system. These controllers are control components defined by the user. Four suboptions are
permitted with respect to the definition of independent and dependent plant model parameters. The choice
of suboptions affords the user flexibility in meeting particular analysis objectives. Moreover, the overall
scheme has been designed such that the user may invoke a standard control package or opt to custom-tailor
the new control components to suit a particular plant model.

A reduction in calculational computer time to perform the initialization is accomplished by using the
steady-state and nearly-implicit solution scheme options (see Section 8.3 and Section 3.1.5, respectively).
The steady-state option diminishes thermal capacitance terms to lower stability limits, thereby
significantly reducing thermal relaxation of the model. It also monitors for a steady-state condition. The
nearly-implicit solution scheme permits time steps larger than those implied by the material Courant limit. 

The self-initialization option is described for PWR-type models employing either U-tube or
once-through steam generators and of single- or multiple-loop design. However, the principles illustrated
can be applied to other systems.

8.4.2  Required Plant Model Characteristics

The option accommodates plant models representing all domestically produced PWR designs, i.e.,
those of Westinghouse, Combustion Engineering, and Babcock & Wilcox. More specifically, single-loop,
two-loop, three-loop, four-loop, and 2 x 4 loop representations are accommodated, using either U-tube or
once-through steam generators. Other assumptions and restrictions related to the plant model are as
follows:
INEEL-EXT-98-00834-V1 8-18



ATHENA/2.3
• The model must have at least one coolant loop consisting of a core region, pump, steam
generator, and pressurizer.

• The core power must be constant or it too must be driven by a control system to constant
power. The reactor kinetics model may be used and held to constant input power by not
entering feedback data. Reactor kinetics data with feedback needed for the transient can be
entered at the restart starting the transient.

• User-specified makeup and letdown flow modeling should be suppressed during the null
transient. The same applies to pressurizer heater and spray modeling. They may be
introduced into the model as a renodalization at transient initiation. Volume and pressure
control during the null transient must be effected through a time-dependent volume that
serves to replace the pressurizer.

• Self-initialization of the plant model encompasses the primary coolant system and steam
generators under the standard approach described subsequently. That is, no provisions
have been made to include the balance-of-plant components in the testing for a
steady-state, though this is possible and is not incompatible with the self-initialization
option. However, if the plant model includes a balance-of-plant representation (e.g.,
turbine, condensers, feedwater pumps, feedwater heaters, etc.), appropriate controllers
would have to be supplied by the user to govern the operation of these components.

• The option is executable from either a new problem data deck or the restart of an old
problem.

8.4.3  Standard Suboptions

Four standard suboptions are available in terms of specifying the independent parameter data set.
This flexibility allows the user to select the suboption that best suits the situation at hand. Here it should be
noted that the term standard refers to the employment of the control components in a standardized way that
will subsequently be described. The nature of the control components, however, allows them to be used in
other ways (i.e., with respect to sensed variable and controlled variable).

Recognize that the state of the plant model cannot be totally dictated by the analyst, since this would
represent an overspecification of the problem. Certain interdependencies are implied by the plant model
geometry and the mathematical models in the code. For example, one cannot simultaneously specify the
thermal power, cold leg temperature, primary coolant flow rate, secondary pressure, and coolant level.
This is an overspecification, since the overall heat transfer characteristics of the steam generator(s) have
been implied by its (their) geometrical description and the heat transfer models in the code. Either the
secondary pressure (and temperature) or cold leg temperature would have to be dependent in this example.

Each of the four standard suboptions has a common set of fixed parameters. These, and the

remaining independent and dependent parameters for each suboption, are listed in Table 8.4-1. These
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suboptions are derived from the four logical combinations that result from selecting two of four variables,
allowing the other two to be dependent. These four are primary flow, reactor coolant pump (RCP) speed,
cold leg temperature, and secondary pressure. Each of the suboptions is described below.

8.4.3.1  Suboption A. Loop flow and cold leg temperature are specified. (Note that specification
of primary flow, core thermal power, and primary pressure fixes the differential temperature across the

vessel.a) This suboption requires that the pump speed, secondary pressure, and secondary feedwater flow
be dependent variables.

The pump speed (ω) is determined based on loop flow ( ), loop pressure drop (∆P), and the pump

characteristics, as determined from pump model input. That is,

. (8.4-1)

Table 8.4-1 Independent/dependent data set suboptions.

Always fixed Core thermal power
Pressurizer pressure

Feedwater temperatures
Secondary coolant level

Suboption Independent Dependent

A Loop flow

Cold leg temperature

RCP speed
Secondary pressure

Secondary flow

B RCP speed

Cold leg temperature

Loop flow
Secondary pressure

Secondary flow

C Loop flow

Secondary pressure

RCP speed
Cold leg temperature

Secondary flow

D RCP speed

Secondary pressure

Loop flow
Cold leg temperature

Secondary flow

a. This takes into account the total pump power and heat losses as well.

m·

ω f m· ∆P,( )=
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Here it should be noted that the resulting pump speed may be different than an observed value (in the
case of an experimental facility) or the synchronous speed (in the case of a full-scale plant). This merely
implies that a mismatch is present in the input data. For example, the user-specified geometry and/or loss
coefficients for the primary coolant system (PCS) may be inaccurate, and/or the pump model may be
inaccurate. The analyst must resolve such inconsistencies. The code will not alter either the pump model or
loss coefficients to arrive at a flow/speed combination that matches facility data.

Analogously, specifying the cold leg temperature (along with power and loop flow) requires that the
secondary pressure and flow must be dependent. The secondary pressure dictates the secondary sink
temperature and, therefore, the primary-to-secondary heat transfer potential and cold leg temperature. Here
again, it should be noted that the resulting secondary pressure may not match that observed in the plant or
test facility. This may mean one of two things. Either the plant model representation of the steam generator
is inadequate (e.g., inaccurately modeled, improperly nodalized, etc.), or the physical models in the code
are imprecise. For example, the failure to match a measured value of secondary pressure might be due to
the fact that the tube fouling was not accounted for in the input model.

8.4.3.2  Suboption B. RCP speed and cold leg temperature are specified, while loop flow,
secondary pressure, and secondary flow are dependent. This suboption is similar to suboption A except
that the roles of RCP speed and loop flow as dependent and independent variables are reversed. This
suboption would be desirable when modeling a plant for which no data exist but the synchronous pump
speed is known.

8.4.3.3  Suboption C. Loop flow and secondary pressure are specified, while RCP speed, cold leg
temperature, and secondary flow are dependent. This suboption is desirable when secondary pressure
matching (to data) would play an important role in the transient.

8.4.3.4  Suboption D. RCP speed and secondary pressure are specified, while loop flow, cold leg
temperature, and secondary flow are dependent. This suboption is similar to suboption C, except that the
independent/dependent roles of loop flow and pump speed are reversed.

8.4.4  Inherent Model Incompatibilities

With such generality possible in defining a plant model with ATHENA, it is clearly possible that a
desired steady-state condition is impossible to achieve given the input data supplied. Several types of
incompatibilities will not be readily apparent until a null transient is attempted. For example, the overall
heat transfer capacity of the steam generator(s) may be insufficient to transfer the total core thermal power
without causing the hot leg temperature to exceed TSAT. Such anomalies will be obvious as the null

transient proceeds but cannot be readily identified from the input data stream.

Another problem is that the default code contains a discrepancy when checking the steady-state by
means of an energy balance. The default code should add the form loss (code calculated abrupt area change
and user-supplied loss) dissipation to the phasic energies. This dissipation was removed in
RELAP5/MOD2 because of temperature problems (i.e., overheating), and thus it is not present in
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ATHENA. The dissipation can be activated by the user in the input deck, however the user is cautioned
that temperature problems may occur.

8.4.5  Description of Standard Controllers

To effect overall control of the model during the null transient, three generic control components are
available and are used to invoke any one of the four suboptions just described. These control components
are identified as PUMPCTL, STEAMCTL, and FEEDCTL. For all suboptions, both STEAMCTL and
FEEDCTL are needed; whereas, PUMPCTL is used only for suboptions A and C where loop flow control
is desired. The following subsections describe the design and operation of the controllers.

8.4.5.1  PUMPCTL Controller. The standard use of the PUMPCTL component is to sense loop
flow and control pump speed to achieve the desired flow rate. As is the case with the other controllers, it
uses proportional and integral control. Through input, the user specifies (among other things) the desired
flow rate, where the flow is to be sensed, and which pump is to be controlled. The mathematical
expressions representing the operation of the controller are next described.

An error signal (E1) is generated by subtracting the actual (V2) from desired (V1) flow rate and

dividing the result by a user-supplied constant (Si). It is given by

. (8.4-2)

This error signal is used to compute a new output signal (pump speed = Y1) for the next time

advancement in accordance with the relationship

(8.4-3)

where G1 equals the gain, T1 is a constant applied to the proportional part, T2 is the time constant for the

integral part, and (Y1)0 is the initial value of the pump speed.

8.4.5.2  STEAMCTL Controller. The standard employment of the STEAMCTL component is to
sense either cold leg temperature (suboptions A and B) or secondary pressure (suboptions C and D) and
control steam flow (through adjustment of the steam valve flow area) to achieve the desired set point. It
functions in exactly the same way as the PUMPCTL component just described, except that the definition
of sensed and controlled variables is changed. For the STEAMCTL component,

E1
V1 V2–

S1
------------------=

Y1
n 1+ G1

E1

T1
-----

E1dt
t0

tn

∫
T2

--------------+

 
 
 
 
 
 
 

Y1( )0+=
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(8.4-4)

where V3 is the desired temperature (or pressure), V4 is the actual value, and Sj is a constant supplied by

the user. Likewise, the output signal (normalized steam valve area) for each new advancement is given as

(8.4-5)

where the terms are analogous to those for the PUMPCTL component.

8.4.5.3  FEEDCTL Controller. The standard employment of the FEEDCTL component is to sense
steam flow and steam generator secondary coolant level (or coolant mass) and control feedwater flow
(through adjustment of the feedwater valve flow area) to achieve a match between feedwater flow and
steam flow and to achieve the desired coolant level (or mass). It is also a proportional/integral controller
but uses a summed error signal made up of the individual flow and level (mass) errors. It is given by

(8.4-6)

where

V5 = desired level (mass)

V6 = actual level (mass)

Sk = user-supplied constant

V7 = actual steam flow

V8 = actual feedwater flow

Sm = user-supplied constant.

The output signal (feedwater valve flow area) is computed analogously to the PUMPCTL and
STEAMCTL components. It is given by

E2
V3 V4–

Sj
------------------=

Y2
n 1+ G2

E2

T3
-----

E2dt
t0

tn

∫
T4

--------------+

 
 
 
 
 
 
 

Y2( )0+=

E3
V5 V6–

Sk
------------------

V7 V8–
Sm

------------------+=
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. (8.4-7)

8.4.5.4  Pressure and Volume Control. The self-initialization option requires that a constant
pressure boundary condition be imposed on the primary coolant system during the null transient. The user
supplies this condition by adding a time-dependent volume as a replacement for the pressurizer. This
time-dependent volume should be defined as containing liquid at the desired primary system pressure and
at a temperature near that estimated to be the final hot leg temperature. During the null transient, liquid will
either flow into or out of the time-dependent volume to accommodate expansion and shrinkage, with no
attendant change in primary pressure. When the self-initialization option is invoked, the code will check to
determine if the time-dependent volume has been included.

Y3
n 1+ G3

E3

T5
-----

E3dt
t0

tn

∫
T6

--------------+

 
 
 
 
 
 
 

Y3( )0+=
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